Traitement du signal

TD1 : Calculs de transformées de Fourier.

La notation I_A indique que $I_A(x) = 1$ si $x \in A$ et 0 sinon.

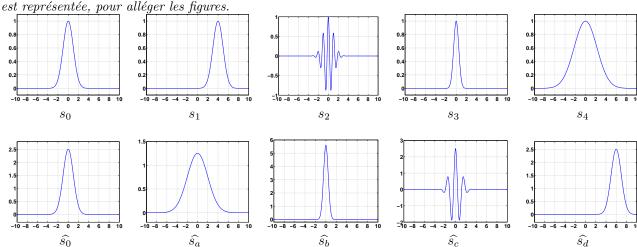
Exercice 1 (Calculs de transformées de Fourier)

- 1. Soit a>0, b>0 et $c\in\mathbb{R}$. Vérifier que les fonctions suivantes sont dans $L^1(\mathbb{R})$. Tracer rapidement ces fonctions, et calculer leurs transformées de Fourier. Tracer ces dernières (ou le cas échéant leur partie réelle).
 - (a) $x \mapsto \frac{1}{2} \mathbb{I}_{[-1,1]}(x)$,
 - (b) $x \mapsto \frac{1}{2} \mathbb{I}_{[c-1,c+1]}(x)$,
 - (c) $x \mapsto f(x)$ avec $f(x) = e^{-2x}$ si $x \ge 0$ et 0 sinon.
 - (d) $x \mapsto e^{-a|x|}$
 - (e) $x \mapsto e^{-a|x|} \sin(bx)$
 - (f) $x \mapsto xe^{-2|x|}$
 - (g) $x \mapsto \frac{2a}{x^2 + a^2}$
 - (h) $x \mapsto \frac{x}{(x^2+1)^2}$
- 2. Quelles fonctions parmi les précédentes vérifient des propriétes de symétrie qui se répercutent sur la transformée de Fourier?
- 3. Dans quels cas peut-on affirmer sans faire de calcul que $\hat{f}(0) = \int_{-\infty}^{\infty} f(x) dx$? $f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) d\omega$?

Exercice 2 (Quizz des transformées de Fourier)

Les figures suivantes représentent six signaux temporels réels à temps continu s_0 à s_4 . Les signaux s_1 à s_4 ont été obtenus par des transformations simples du signal s_0 : modulation (multiplication par un exponentielle complexe), décalage, dilatation, ajout d'une constante... Sur la ligne suivante le signal $\widehat{s_0}$ représente la transformée de Fourier du signal $\widehat{s_0}$.

Les signaux \hat{s}_a à \hat{s}_d sont les transformées de Fourier dans le désordre des signaux s_1 à s_4 ! Remarque : certaines transformées de Fourier sont complexes, mais seule leur partie réelle est représentée pour alléger les figures



- 1. Identifier les transformations qui permettent de passer à chacun des signaux s_1 à s_4 à partir de s_0 .
- 2. Reformer les couples (s_i, \hat{s}_i) , c'est à dire associer à chaque signal s_i sa transformée

de Fourier élément de l'ensemble $\hat{s}_a, \hat{s}_b, \hat{s}_c, \hat{s}_d$

Exercice 3

- 1. Tracer Re(f(t)) en fonction de t où $f: t \mapsto e^{-(a-ib)t^2}$ pour plusieurs valeurs de a et de b et justifier que f est bien dans $L^1(\mathbb{R})$.
- 2. A l'aide d'une équation différentielle montrer que la transformée de Fourier de $f: t\mapsto e^{-(a-ib)t^2}$ vaut $\hat{f}(\omega)=\sqrt{\frac{\pi}{a-ib}}\exp\left(-\frac{(a+ib)\omega^2}{4(a^2+b^2)}\right)$.

Exercice 4

- 1. Justifier que $f: t \mapsto \frac{e^{-t}}{\sqrt{t}} \, \mathbb{1}_{]0,+\infty[}(t)$ est bien dans $L^1(\mathbb{R})$.
- 2. A l'aide d'une équation différentielle calculer la transformée de Fourier de f.

Exercice 5 (Sonar)

Le but de cet exercice est l'étude de $e(t)=\frac{2\alpha}{\alpha^2+t^2}$ qui modélise une impulsion émise par un sonar.

- 1. A l'aide des résultats de l'exercice 1 calculer la transformée de Fourier de e (en ayant justifé au préalable que e est bien dans $L^1(\mathbb{R})$). Calculer $||e||_2^2$.
- 2. Le sonar reçoit un écho r(t) provenant d'une cible. On suppose que $\hat{r}(\omega)$ est obtenu à partir de $\hat{e}(\omega)$ par un facteur d'atténuation $a(\omega) = e^{-i\theta\omega \beta|\omega|}$ avec $(\theta, \beta) \in \mathbb{R}^2_+$, c'est à dire $\hat{r}(\omega) = a(\omega)\hat{e}(\omega)$. Calculer r(t).

Exercice 6 (Fonction porte)

On considère la fonction f telle que

$$f(t) = \begin{cases} 0 & \text{si } t < -1 & \text{ou } t > 1 \\ 1 & \text{si } -1 \le t < 0 \\ -1 & \text{si } 0 \le t < 1 \end{cases}$$

- 1. Tracer la fonction f.
- 2. Calculer $F(x) = \int_{-1}^{x} f(t)dt$ pour $x \in \mathbb{R}$.
- 3. Montrer que $\int_{-\infty}^{\infty} F(x)dx < \infty$ et calculer \hat{F} . Montrer qu'elle s'écrit sous la forme $\hat{F}(\omega) = \frac{\sin^2(\alpha\omega)}{(\alpha\omega)^2}$ en précisant la valeur de α .
- 4. On pose maintenant G(x) = F(x+1) F(x-1). Tracer G et calculer sa transformée de Fourier en cherchant à faire le moins de calculs possible.
- 5. Soit K la primitive de G telle que $K(x) = \int_{-2}^{x} G(t) dt$. Calculer \hat{K} sans calculer K.

Exercice 7 (Dérivée des transformées de Fourier)

On rappelle que la transformée de Fourier de la gaussienne $g(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ est $\hat{g}(\omega) = e^{-\frac{\omega^2}{2}}$ (cf cours).

- 1. Calculer la transformée de Fourier de $h(x) = \frac{1}{\sqrt{2\pi}}x^2e^{-\frac{x^2}{2}}$ en justifiant que h est bien dans $L^1(\mathbb{R})$.
- 2. En déduire la transformée de Fourier de $k(x) = \frac{1}{\sqrt{2\pi}}(x^2 1)e^{-\frac{x^2}{2}}$

Exercice 8

En utilisant les résultats de l'exercice 6 et les résultats du cours calculer $\int_0^{+\infty} \frac{\sin^4(x)}{x^4}$

Exercice 9 (L'autre formule pour la transformée de Fourier)

Dans cet exercice on change de définition de la transformée de Fourier et on utilise l'autre convention pour la transformée de Fourier $\tilde{f}(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i2\pi\omega t} dt$.

- 1. Calculer \hat{f} (transformée de Fourier avec la formule du cours) en fonction de \tilde{f} .
- 2. Reprendre les questions de l'exercice 6 et donner les valeurs de \tilde{F} , \tilde{G} , \tilde{K} en faisant le moins de calculs possibles.
- 3. On suppose que f et \tilde{f} sont toutes les deux dans $L^1(\mathbb{R})$. Montrer que

$$f(t) = \int_{-\infty}^{\infty} \tilde{f}(\omega)e^{i2\pi\omega t}d\omega \tag{1}$$

4. On suppose que f est dans $L^2(\mathbb{R})$. Montrer que

$$\parallel f \parallel^2 = \parallel \tilde{f} \parallel^2 \tag{2}$$

Exercice 10

Montrer que $\int_{-\infty}^{\infty} \frac{\sin^2(t)}{t^2} dt < \infty$ et la calculer en utilisant la transformée de Fourier.

Exercice 11

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ une fonction dans $L^1(\mathbb{R}^2)$.

Soit θ fixé dans $[0, 2\pi]$. Soit g_{θ} l'intégrale de f le long de la droite d'équation $-x_1 \sin(\theta) + x_2 \cos(\theta) = t$ (faire un dessin).

On a donc g_{θ} tel que

$$g_{\theta}(t) = \int_{-\infty}^{\infty} f(-t\sin\theta + \rho\cos\theta, t\cos\theta + \rho\sin\theta) d\rho$$

Montrer que $\hat{g}_{\theta}(\omega) = \hat{f}(-\omega \sin \theta, \omega \cos \theta)$. Comment peut-on retrouver f à partir de ses projections tomographiques g_{θ} pour $0 \le \theta \le 2\pi$?

Exercice 12

On note R l'opérateur qui à un signal $f \in L^2(\mathbb{R})$ associe sa valeur absolue :

$$Rf(t) = |f(t)|$$
.

R est appelé rectificateur, et est utilisé en pratique pour retrouver l'enveloppe de signaux complexes (signaux modulés). Montrer que si $f(t) = a(t)\cos(\omega_0 t)$, où $a(t) \ge 0$, alors

$$\widehat{Rf}(\omega) = -\frac{2}{\pi} \sum_{n=-\infty}^{\infty} \frac{1}{4n^2 - 1} \widehat{a}(\omega - 2n\omega_0) .$$

En supposant que $\hat{a}(\omega) = 0$ pour $|\omega| > \omega_0$, trouver une fonction h telle que $a = K_h R f$, où K_h est l'opérateur de convolution par h.