Atkin Modular Polynomial Database |
The Atkin modular function $f(q)$ of prime level N is a modular function on $X_0^+(N)$ of minimal degree, holomorphic on the upper half plane, and whose $q$-expansion has leading coefficient $1$. It is unique up to a constant. The Atkin modular polynomial is a bivariate polynomial $\Phi_N(X,Y)$ such that $$ \Phi_N(f(q),j(q)) = 0, $$ where $j(q) = q^{-1} + 744 + 196884 q + \cdots$ is the modular $j$-invariant. Since $f(q)$ is invariant under the Atkin-Lehner operator, and the image of $j(q)$ is $j_N(q) = j(q^N)$, we also have $\Phi_N(f(q),j_N(q)) = 0$.
Level | Degree | Number of monomials |
[2] | 1 | 8 |
[3] | 1 | 10 |
[5] | 1 | 14 |
[7] | 1 | 18 |
[11] | 1 | 26 |
[13] | 1 | 30 |
[17] | 1 | 38 |
[19] | 1 | 42 |
[23] | 1 | 50 |
[29] | 1 | 62 |
[31] | 1 | 66 |
[37] | 2 | 135 |
[41] | 1 | 86 |
[43] | 2 | 156 |
[47] | 1 | 98 |
[53] | 2 | 191 |
[59] | 1 | 122 |
[61] | 2 | 219 |
[67] | 3 | 342 |
[71] | 1 | 146 |
[73] | 3 | 372 |
[79] | 2 | 282 |
[83] | 2 | 296 |
[89] | 2 | 317 |
[97] | 4 | 639 |
[101] | 2 | 359 |
[103] | 3 | 522 |
[107] | 3 | 542 |
[109] | 3 | 552 |
[113] | 4 | 743 |
[127] | 4 | 834 |
[131] | 2 | 464 |
[137] | 5 | 1106 |
[139] | 4 | 912 |
[149] | 4 | 977 |
[151] | 3 | 762 |
[157] | 6 | 1503 |
[163] | 7 | 1806 |
[167] | 3 | 842 |
[173] | 4 | 1133 |
[179] | 3 | 902 |
[181] | 6 | 1731 |
[191] | 3 | 962 |
[193] | 6 | 1845 |
[197] | 6 | 1883 |
[199] | 5 | 1602 |
[211] | 7 | 2334 |
[223] | 7 | 2466 |
[227] | 5 | 1826 |
[229] | 7 | 2532 |
[233] | 7 | 2576 |
[239] | 4 | 1562 |
[241] | 6 | 2301 |
[251] | 4 | 1640 |
[257] | 6 | 2453 |
[263] | 5 | 2114 |
[269] | 6 | 2567 |
[271] | 6 | 2586 |
[277] | 9 | 3894 |
[281] | 7 | 3104 |
[283] | 8 | 3552 |
[293] | 7 | 3236 |
[307] | 10 | 4776 |
[311] | 5 | 2498 |
[313] | 11 | 5340 |
[317] | 11 | 5408 |
[331] | 11 | 5646 |
[337] | 12 | 6255 |
[347] | 9 | 4874 |
[349] | 10 | 5427 |
[353] | 8 | 4427 |
[359] | 6 | 3422 |
[367] | 10 | 5706 |
[373] | 12 | 6921 |
[379] | 12 | 7032 |
[383] | 8 | 4802 |
[389] | 12 | 7217 |
[397] | 12 | 7365 |
[401] | 10 | 6233 |
[409] | 10 | 6357 |
[419] | 7 | 4622 |
[421] | 14 | 9075 |
[431] | 7 | 4754 |
[433] | 14 | 9333 |
[439] | 11 | 7482 |
[443] | 12 | 8216 |
[449] | 11 | 7652 |
[457] | 13 | 9162 |
[461] | 11 | 7856 |
[463] | 14 | 9978 |
[467] | 11 | 7958 |
[479] | 8 | 6002 |
[487] | 15 | 11226 |
[491] | 8 | 6152 |
[499] | 16 | 12252 |
[503] | 10 | 7814 |
[509] | 12 | 9437 |
[521] | 12 | 9659 |
[523] | 15 | 12054 |
[541] | 17 | 14094 |
[547] | 18 | 15072 |
[557] | 16 | 13673 |
[563] | 13 | 11282 |
[569] | 14 | 12257 |
[571] | 19 | 16590 |
[577] | 20 | 17631 |
[587] | 14 | 12644 |
[593] | 14 | 12773 |
[599] | 10 | 9302 |
[601] | 15 | 13848 |
[607] | 18 | 16722 |
[613] | 19 | 17808 |
[617] | 20 | 18851 |
[619] | 17 | 16122 |
[631] | 15 | 14538 |
[641] | 16 | 15731 |
[643] | 22 | 21576 |
[647] | 13 | 12962 |
[653] | 24 | 23873 |
[659] | 11 | 11222 |
[661] | 21 | 21186 |
[673] | 24 | 24603 |
[677] | 16 | 16613 |
[683] | 19 | 19838 |
[691] | 21 | 22146 |
[701] | 21 | 22466 |
[709] | 23 | 24852 |
[719] | 12 | 13322 |
[727] | 21 | 23298 |
[733] | 25 | 27894 |
[739] | 24 | 27012 |
[743] | 15 | 17114 |
[751] | 18 | 20682 |
[757] | 26 | 29943 |
[761] | 18 | 20957 |
[769] | 19 | 22332 |
[773] | 18 | 21287 |
[787] | 26 | 31128 |
[797] | 19 | 23144 |
[809] | 20 | 24707 |
[811] | 25 | 30858 |
[821] | 24 | 30005 |
[823] | 24 | 30078 |
[827] | 23 | 28982 |
[829] | 27 | 34032 |
[839] | 14 | 18062 |
[853] | 29 | 37578 |
[857] | 20 | 26171 |
[859] | 27 | 35262 |
[863] | 18 | 23762 |
[877] | 28 | 37317 |
[881] | 21 | 28226 |
[883] | 32 | 42876 |
[887] | 18 | 24422 |
[907] | 29 | 39954 |
[911] | 15 | 20978 |
[919] | 23 | 32202 |
[929] | 22 | 31157 |
[937] | 33 | 46902 |
[941] | 22 | 31559 |
[947] | 26 | 37448 |
[953] | 28 | 40547 |
[967] | 30 | 44046 |
[971] | 16 | 23816 |
[977] | 34 | 50369 |
[983] | 20 | 30014 |
[991] | 24 | 36210 |
[997] | 34 | 51399 |
[1009] | 25 | 38382 |
[1013] | 24 | 37013 |
[1019] | 17 | 26522 |
[1021] | 34 | 52635 |
[1031] | 17 | 26834 |
[1033] | 32 | 50151 |
[1039] | 26 | 41082 |
[1049] | 25 | 39902 |
[1051] | 35 | 55758 |
[1061] | 34 | 54695 |
[1063] | 33 | 53202 |
[1069] | 35 | 56712 |
[1087] | 34 | 56034 |
[1091] | 18 | 30032 |
[1093] | 42 | 69471 |
[1097] | 26 | 43373 |
[1103] | 23 | 38642 |
[1109] | 26 | 43847 |
[1117] | 38 | 64287 |
[1123] | 38 | 64632 |
[1129] | 28 | 48027 |
[1151] | 19 | 33410 |
[1153] | 37 | 64626 |
[1163] | 32 | 56456 |
[1171] | 39 | 69150 |
[1181] | 28 | 50237 |
[1187] | 33 | 59402 |
[1193] | 28 | 50747 |
[1201] | 30 | 54693 |
[1213] | 42 | 77091 |
[1217] | 29 | 53594 |
[1223] | 25 | 46514 |
[1229] | 37 | 68882 |
[1231] | 30 | 56058 |
[1237] | 48 | 89757 |
[1249] | 31 | 58752 |
[1259] | 21 | 40322 |
[1277] | 30 | 58151 |
[1279] | 32 | 62082 |
[1283] | 35 | 68054 |
[1289] | 32 | 62567 |
[1291] | 42 | 82044 |
[1297] | 46 | 90213 |
[1301] | 31 | 61196 |
[1303] | 39 | 76938 |
[1307] | 31 | 61478 |
[1319] | 22 | 44222 |
[1321] | 33 | 66102 |
[1327] | 41 | 82338 |
[1361] | 32 | 66059 |
[1367] | 28 | 58142 |
[1373] | 47 | 97556 |
[1381] | 46 | 96051 |
[1399] | 35 | 74202 |
[1409] | 35 | 74732 |
[1423] | 44 | 94698 |
[1427] | 34 | 73544 |
[1429] | 47 | 101532 |
[1433] | 34 | 73853 |
[1439] | 24 | 52562 |
[1447] | 45 | 98466 |
[1451] | 24 | 53000 |
[1459] | 43 | 94902 |
[1471] | 36 | 80226 |
[1481] | 37 | 82994 |
[1487] | 31 | 69938 |
[1489] | 37 | 83442 |
[1493] | 45 | 101594 |
[1499] | 25 | 57002 |
[1511] | 25 | 57458 |
[1523] | 42 | 96776 |
[1543] | 48 | 111942 |
[1553] | 37 | 87026 |
[1559] | 26 | 61622 |
[1571] | 26 | 62096 |
[1583] | 33 | 79202 |
[1601] | 38 | 92117 |
[1607] | 33 | 80402 |
[1609] | 40 | 97407 |
[1613] | 38 | 92807 |
[1619] | 27 | 66422 |
[1637] | 39 | 96644 |
[1667] | 46 | 115928 |
[1697] | 40 | 102731 |
[1721] | 41 | 106766 |
[1759] | 44 | 117042 |
[1801] | 45 | 122538 |
[1811] | 30 | 82448 |
[1823] | 38 | 104882 |
[1831] | 45 | 124578 |
[1847] | 38 | 106262 |
[1871] | 31 | 87986 |
[1889] | 45 | 128522 |
[1907] | 45 | 129746 |
[1931] | 32 | 93704 |
[1979] | 33 | 99002 |
[2039] | 34 | 105062 |
[2099] | 35 | 111302 |
[2111] | 35 | 111938 |