Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

An Igusa CM invariant is specified by a sequence of three polynomials [ H1(x), G2(x)/N2, G3(x)/N3], such that H1(x), G2(x), and G3(x) are in Z[x],

H1(i1) = 0, i2 = G2(i1)/N1N2, i3 = G3(i1)/N1N3,
where N1 = H1'(i1), and N2 and N3 are integers, and
i1 = I4I6/I10, i2 = I23I4/I10, i3 = I22I6/I10,

in terms of the Igusa-Clebsch invariants [ I2, I4, I6, I10 ].

Degree: [Non-normal] [Cyclic]

[2][4][6][8][10][12][14][16][18][20][22][24][26][28][30][32][34][36][38][40][42][44][46][48]
[50][52][54][56][58][60][62][64][66][68][70][72][74][76][78][80][82][84][86][88][90][92][94][96]
[98][100][102][104][106][108][110][112][114][116][118][120][122][124][126][128][130][132][134][136][138][140][142][144]
[146][148][150][152][154][156][158][160][162][164][166][168][170][172][174][176][178][180][182][184][186][188][190][192]
[194][196][198][200][202][204][206][208][210][212][214][216][218][220][222][224][226][228][230][232][234][236][238][240]
[242][244][246][248][250][252][254][256][258][260][262][264][266][268][270][272][274][276][278][280][282][284][286][288]
[290][292][294][296][298][300][302][304][306][308][310][312][314][316][318][320][322][324][326][328][330][332][334][336]
[338][340][342][344][346][348][350][352][354][356][358][360][362][364][366][368][370][372][374][376][378][380][382][384]
[386][388][390][392][394][396][398][400][402][404][406][408][410][412][414][416][418][420][422][424][426][428][430][432]
[434][436][438][440][442][444][446][448][450][452][454][456][458][460][462][464][466][468][470][472][474][476][478][480]
[482][484][486][488][490][492][494][496][498][500][502][504][506][508][510][512][514][516][518][520][522][524][526][528]
[530][532][534][536][538][540][542][544][546][548][550][552][554][556][558][560][562][564][566][568][570][572][574][576]
[578][580][582][584][586][588][590][592][594][596][598][600][602][604][606][608][610][612][614][616][618][620][622][624]
[626][628][630][632][634][636][638][640][642][644][646][648][650][652][654][656][658][660][662][664][666][668][670][672]
[674][676][678][680][682][684][686][688][690][692][694][696][698][700][702][704][706][708][710][712][714][716][718][720]
[722][724][726][728][730][732][734][736][738][740][742][744][746][748][750][752][754][756][758][760][762][764][766][768]
[770][772][774][776][778][780][782][784][786][788][790][792][794][796][798][800][802][804][806][808][810][812][814][816]
[818][820][822][824][826][828][830][832][834][836][838][840][842][844][846][848][850][852][854][856][858][860][862][864]
[1106][1108][1110][1112][1114][1116][1118][1120][1122][1124][1126][1128][1130][1132][1134][1136][1138][1140][1142][1144][1146][1148][1150][1152]

Degree 144 Igusa CM invariants of non-normal (D4) fields: 385

Number Igusa invariants Conductor Components Quartic invariants Class number Class group
1) [317, 293, 11873] [1] 1 [317, 293, 11873] 72 C3 x C24
2) [317, 269, 4697] [1] 1 [317, 269, 4697] 72 C2 x C36
3) [317, 429, 36421] [1] 2 [317, 429, 36421] 144 C2 x C2 x C36
4) [165, 317, 15841] [1] 1 [165, 317, 15841] 144 C4 x C36
5) [157, 429, 45657] [3] 2 [157, 429, 45657] 36 C6 x C6
6) [157, 393, 35433] [1] 2 [157, 393, 35433] 144 C2 x C6 x C12
7) [809, 231, 8284] [1] 1 [809, 231, 8284] 72 C2 x C36
8) [60, 616, 94804] [1] 2 [60, 616, 94804] 288 C4 x C72
9) [60, 234, 11529] [3] 1 [60, 234, 11529] 48 C4 x C12
10) [737, 267, 13216] [1] 1 [737, 267, 13216] 72 C2 x C36
11) [229, 313, 14817] [1] 1 [229, 313, 14817] 216 C6 x C36
12) [229, 193, 2385] [9] 1 [229, 193, 2385] 18 C3 x C6
13) [301, 301, 13545] [1] 1 [301, 301, 13545] 72 C2 x C36
14) [301, 721, 126273] [1] 1 [301, 721, 126273] 72 C2 x C36
15) [301, 357, 31185] [3] 2 [301, 357, 31185] 48 C2 x C2 x C2 x C6
16) [629, 1049, 59825] [1] 1 [629, 1049, 59825] 144 C144
17) [269, 401, 25069] [1] 1 [269, 401, 25069] 72 C2 x C36
18) [3637, 229, 12201] [1] 1 [3637, 229, 12201] 72 C72
19) [376, 274, 9369] [3] 1 [376, 274, 9369] 24 C24
20) [88, 98, 2313] [4, 4] 1 [88, 98, 2313] 18 C18
21) [349, 325, 24225] [1] 2 [349, 325, 24225] 144 C2 x C2 x C6 x C6
22) [120, 114, 2169] [7] 1 [120, 114, 2169] 24 C2 x C12
23) [120, 254, 8449] [1] 1 [120, 254, 8449] 144 C2 x C2 x C36
24) [296, 428, 35140] [1] 2 [296, 428, 35140] 288 C2 x C4 x C36
25) [129, 210, 6381] [2] 2 [129, 210, 6381] 24 C24
26) [104, 438, 47545] [1] 1 [104, 438, 47545] 144 C4 x C36
27) [104, 108, 2812] [1] 1 [104, 108, 2812] 144 C4 x C36
28) [104, 410, 39425] [1] 2 [104, 410, 39425] 288 C2 x C4 x C36
29) [104, 254, 5729] [1] 1 [104, 254, 5729] 144 C2 x C6 x C12
30) [104, 68, 740] [11] 1 [104, 68, 740] 12 C12
31) [461, 333, 8245] [1] 1 [461, 333, 8245] 72 C2 x C36
32) [1049, 119, 1180] [1] 1 [1049, 119, 1180] 72 C2 x C36
33) [109, 313, 16617] [1] 1 [109, 313, 16617] 72 C6 x C12
34) [109, 286, 18705] [1] 1 [109, 286, 18705] 72 C2 x C2 x C18
35) [109, 453, 51057] [3] 2 [109, 453, 51057] 36 C2 x C18
36) [797, 225, 2893] [1] 1 [797, 225, 2893] 72 C72
37) [57, 192, 7164] [1] 1 [57, 192, 7164] 72 C2 x C36
38) [205, 405, 40545] [1] 2 [205, 405, 40545] 288 C2 x C2 x C2 x C36
39) [309, 202, 8965] [1] 1 [309, 202, 8965] 72 C2 x C36
40) [309, 345, 27825] [1] 2 [309, 345, 27825] 144 C2 x C2 x C2 x C18
41) [1277, 1145, 158873] [1] 1 [1277, 1145, 158873] 72 C72
42) [421, 289, 18249] [1] 1 [421, 289, 18249] 72 C2 x C2 x C18
43) [421, 301, 22545] [1] 1 [421, 301, 22545] 72 C2 x C36
44) [421, 29, 105] [3] 1 [421, 29, 105] 24 C2 x C12
45) [421, 277, 14025] [5] 1 [421, 277, 14025] 12 C2 x C6
46) [685, 165, 5265] [3] 2 [685, 165, 5265] 96 C2 x C4 x C12
47) [136, 346, 23265] [1] 1 [136, 346, 23265] 144 C4 x C36
48) [253, 373, 33201] [1] 1 [253, 373, 33201] 72 C2 x C36
49) [253, 345, 24633] [1] 2 [253, 345, 24633] 144 C2 x C2 x C2 x C18
50) [377, 459, 52576] [1] 1 [377, 459, 52576] 144 C4 x C36
51) [517, 249, 14337] [9] 2 [517, 249, 14337] 12 C12
52) [493, 261, 15921] [1] 2 [493, 261, 15921] 288 C2 x C4 x C36
53) [493, 265, 17433] [1] 1 [493, 265, 17433] 144 C6 x C24
54) [13, 2270, 1241425] [1] 2 [13, 2270, 1241425] 144 C2 x C2 x C36
55) [13, 2534, 1238377] [1] 2 [13, 2534, 1238377] 144 C2 x C72
56) [13, 270, 16353] [3, 3] 1 [13, 270, 16353] 24 C2 x C2 x C6
57) [13, 9, 17] [8, 72] 1 [13, 9, 17] 1 C1
58) [13, 142, 1713] [3, 9] 1 [13, 142, 1713] 6 C6
59) [13, 1553, 216121] [1] 1 [13, 1553, 216121] 72 C72
60) [13, 750, 99857] [1] 1 [13, 750, 99857] 72 C72
61) [13, 1217, 334441] [1] 1 [13, 1217, 334441] 72 C2 x C36
62) [13, 601, 90037] [1] 1 [13, 601, 90037] 72 C72
63) [13, 169, 4017] [4, 4] 1 [13, 169, 4017] 12 C2 x C6
64) [13, 65, 897] [3, 9] 1 [13, 65, 897] 12 C2 x C6
65) [13, 103, 2623] [1] 1 [13, 103, 2623] 72 C2 x C36
66) [13, 1517, 427873] [1] 1 [13, 1517, 427873] 72 C72
67) [13, 1541, 233281] [1] 1 [13, 1541, 233281] 72 C72
68) [13, 1262, 171649] [1] 1 [13, 1262, 171649] 72 C2 x C36
69) [13, 541, 66589] [1] 1 [13, 541, 66589] 72 C72
70) [13, 350, 23137] [3, 3] 1 [13, 350, 23137] 18 C18
71) [13, 61, 849] [3, 9] 1 [13, 61, 849] 6 C6
72) [13, 286, 15249] [2, 2] 1 [13, 286, 15249] 24 C2 x C2 x C6
73) [13, 1814, 343417] [1] 1 [13, 1814, 343417] 72 C72
74) [13, 341, 22489] [3, 3] 1 [13, 341, 22489] 18 C18
75) [13, 125, 1537] [2, 6] 1 [13, 125, 1537] 6 C6
76) [8, 174, 4977] [3, 3] 1 [8, 174, 4977] 24 C2 x C12
77) [8, 1854, 719937] [1] 2 [8, 1854, 719937] 144 C2 x C72
78) [8, 762, 132993] [1] 2 [8, 762, 132993] 144 C2 x C72
79) [8, 1374, 423297] [1] 2 [8, 1374, 423297] 144 C2 x C72
80) [8, 730, 126497] [1] 1 [8, 730, 126497] 72 C2 x C36
81) [8, 1338, 326529] [1] 2 [8, 1338, 326529] 144 C2 x C2 x C36
82) [8, 1206, 354361] [1] 1 [8, 1206, 354361] 72 C2 x C2 x C18
83) [8, 186, 4417] [6, 6] 1 [8, 186, 4417] 18 C18
84) [8, 1038, 220689] [1] 2 [8, 1038, 220689] 144 C2 x C2 x C36
85) [8, 718, 75089] [1] 1 [8, 718, 75089] 72 C2 x C36
86) [8, 1266, 389737] [1] 1 [8, 1266, 389737] 72 C72
87) [8, 494, 60977] [1] 1 [8, 494, 60977] 72 C6 x C12
88) [8, 730, 119777] [1] 1 [8, 730, 119777] 72 C2 x C36
89) [8, 346, 29281] [1] 1 [8, 346, 29281] 72 C2 x C36
90) [8, 430, 45073] [1] 1 [8, 430, 45073] 72 C2 x C36
91) [8, 276, 18706] [1] 1 [8, 276, 18706] 72 C2 x C36
92) [8, 426, 45169] [1] 1 [8, 426, 45169] 72 C72
93) [8, 216, 11086] [1] 1 [8, 216, 11086] 72 C6 x C12
94) [8, 78, 1393] [9, 9] 1 [8, 78, 1393] 12 C12
95) [8, 522, 53329] [1] 1 [8, 522, 53329] 72 C72
96) [8, 446, 49601] [1] 1 [8, 446, 49601] 72 C72
97) [8, 590, 60113] [1] 1 [8, 590, 60113] 72 C72
98) [8, 174, 7567] [1] 1 [8, 174, 7567] 72 C2 x C2 x C18
99) [8, 654, 63121] [1] 1 [8, 654, 63121] 72 C2 x C36
100) [8, 398, 36401] [2, 2] 1 [8, 398, 36401] 36 C36
101) [8, 244, 11842] [1] 1 [8, 244, 11842] 72 C6 x C12
102) [8, 316, 24514] [1] 1 [8, 316, 24514] 72 C2 x C2 x C18
103) [8, 1302, 396889] [1] 1 [8, 1302, 396889] 72 C3 x C24
104) [8, 238, 9553] [2, 2] 1 [8, 238, 9553] 36 C36
105) [8, 138, 4113] [6, 6] 1 [8, 138, 4113] 12 C12
106) [8, 186, 8001] [3, 3] 1 [8, 186, 8001] 24 C2 x C12
107) [8, 458, 52241] [1] 1 [8, 458, 52241] 72 C2 x C36
108) [280, 274, 5049] [3] 1 [280, 274, 5049] 48 C4 x C12
109) [5, 941, 216409] [1] 1 [5, 941, 216409] 72 C72
110) [5, 989, 205369] [1] 1 [5, 989, 205369] 72 C72
111) [5, 1233, 319021] [1] 1 [5, 1233, 319021] 72 C2 x C36
112) [5, 255, 13255] [1] 1 [5, 255, 13255] 72 C2 x C2 x C18
113) [5, 414, 42129] [3, 3] 1 [5, 414, 42129] 24 C2 x C12
114) [5, 355, 30955] [1] 1 [5, 355, 30955] 72 C2 x C2 x C18
115) [5, 201, 9889] [9, 9] 1 [5, 201, 9889] 12 C2 x C6
116) [5, 470, 54905] [2, 2] 1 [5, 470, 54905] 24 C2 x C12
117) [5, 733, 118921] [1] 1 [5, 733, 118921] 72 C2 x C36
118) [5, 345, 26505] [3, 3] 1 [5, 345, 26505] 24 C2 x C2 x C6
119) [5, 454, 50809] [2, 2] 1 [5, 454, 50809] 24 C2 x C12
120) [5, 1301, 422489] [1] 1 [5, 1301, 422489] 72 C72
121) [5, 320, 25420] [1] 1 [5, 320, 25420] 72 C2 x C2 x C18
122) [5, 465, 53505] [3, 3] 1 [5, 465, 53505] 24 C2 x C2 x C6
123) [5, 1349, 388249] [1] 1 [5, 1349, 388249] 72 C72
124) [5, 1429, 424049] [1] 1 [5, 1429, 424049] 72 C72
125) [5, 250, 13420] [1] 1 [5, 250, 13420] 72 C2 x C6 x C6
126) [5, 1361, 452729] [1] 1 [5, 1361, 452729] 72 C72
127) [5, 470, 55145] [2, 2] 1 [5, 470, 55145] 24 C2 x C12
128) [5, 350, 30305] [2, 2] 1 [5, 350, 30305] 24 C2 x C2 x C6
129) [5, 1361, 461369] [1] 1 [5, 1361, 461369] 72 C72
130) [5, 252, 12751] [1] 1 [5, 252, 12751] 72 C2 x C36
131) [5, 582, 84361] [1] 1 [5, 582, 84361] 72 C72
132) [5, 309, 23769] [3, 3] 1 [5, 309, 23769] 24 C2 x C12
133) [5, 270, 15345] [3, 3] 1 [5, 270, 15345] 24 C2 x C2 x C6
134) [5, 957, 221161] [1] 1 [5, 957, 221161] 72 C72
135) [5, 929, 185729] [1] 1 [5, 929, 185729] 72 C72
136) [5, 1121, 311849] [1] 1 [5, 1121, 311849] 72 C72
137) [5, 33, 241] [3, 3, 9] 1 [5, 33, 241] 3 C3
138) [5, 1206, 343129] [1] 1 [5, 1206, 343129] 72 C72
139) [5, 405, 39105] [3, 3] 1 [5, 405, 39105] 24 C2 x C2 x C6
140) [5, 312, 24211] [1] 1 [5, 312, 24211] 72 C2 x C2 x C18
141) [5, 1041, 266569] [1] 1 [5, 1041, 266569] 72 C72
142) [5, 854, 175849] [1] 1 [5, 854, 175849] 72 C72
143) [5, 638, 90241] [1] 1 [5, 638, 90241] 72 C2 x C36
144) [5, 230, 12905] [7, 7] 1 [5, 230, 12905] 12 C2 x C6
145) [5, 25, 145] [2, 22] 1 [5, 25, 145] 2 C2
146) [5, 390, 35145] [3, 3] 1 [5, 390, 35145] 24 C2 x C2 x C6
147) [5, 302, 20801] [2, 2] 1 [5, 302, 20801] 24 C2 x C12
148) [5, 345, 24145] [2, 2] 1 [5, 345, 24145] 24 C2 x C12
149) [5, 1261, 334249] [1] 1 [5, 1261, 334249] 72 C72
150) [5, 2286, 1288449] [1] 2 [5, 2286, 1288449] 144 C2 x C72
151) [5, 1406, 489089] [1] 1 [5, 1406, 489089] 72 C2 x C36
152) [5, 885, 189145] [1] 1 [5, 885, 189145] 72 C2 x C2 x C18
153) [5, 340, 28855] [1] 1 [5, 340, 28855] 72 C2 x C2 x C18
154) [5, 309, 19809] [3, 3] 1 [5, 309, 19809] 24 C2 x C12
155) [5, 1605, 541045] [1] 1 [5, 1605, 541045] 72 C2 x C36
156) [5, 354, 31324] [1] 1 [5, 354, 31324] 72 C2 x C36
157) [5, 1625, 641245] [1] 1 [5, 1625, 641245] 72 C2 x C2 x C18
158) [5, 1309, 416609] [1] 1 [5, 1309, 416609] 72 C2 x C36
159) [5, 334, 25009] [2, 2] 1 [5, 334, 25009] 24 C24
160) [268, 306, 13761] [1] 2 [268, 306, 13761] 144 C2 x C2 x C36
161) [29, 377, 34945] [3, 3] 1 [29, 377, 34945] 36 C2 x C18
162) [29, 149, 5369] [5, 5] 1 [29, 149, 5369] 12 C2 x C6
163) [29, 49, 593] [7] 1 [29, 49, 593] 9 C9
164) [29, 150, 1449] [3, 3] 1 [29, 150, 1449] 24 C2 x C12
165) [29, 437, 46865] [1] 1 [29, 437, 46865] 72 C2 x C2 x C18
166) [92, 362, 2953] [1] 1 [92, 362, 2953] 72 C72
167) [92, 162, 5089] [1] 1 [92, 162, 5089] 72 C2 x C36
168) [92, 584, 84436] [1] 2 [92, 584, 84436] 144 C2 x C2 x C36
169) [92, 278, 10121] [1] 1 [92, 278, 10121] 72 C72
170) [92, 266, 8489] [1] 1 [92, 266, 8489] 72 C3 x C24
171) [124, 246, 10665] [1] 1 [124, 246, 10665] 72 C2 x C36
172) [124, 262, 14650] [1] 1 [124, 262, 14650] 72 C3 x C24
173) [93, 93, 1953] [3, 9] 1 [93, 93, 1953] 12 C12
174) [93, 254, 2737] [2, 2] 1 [93, 254, 2737] 24 C2 x C12
175) [93, 441, 47481] [1] 2 [93, 441, 47481] 144 C2 x C2 x C2 x C18
176) [1693, 1197, 354393] [1] 2 [1693, 1197, 354393] 144 C2 x C72
177) [953, 167, 4828] [1] 1 [953, 167, 4828] 72 C2 x C36
178) [24, 304, 22504] [1] 1 [24, 304, 22504] 72 C2 x C36
179) [24, 318, 24897] [1] 1 [24, 318, 24897] 72 C2 x C36
180) [24, 50, 601] [2, 10] 1 [24, 50, 601] 6 C6
181) [24, 482, 57865] [1] 1 [24, 482, 57865] 72 C2 x C36
182) [24, 34, 73] [6, 18] 1 [24, 34, 73] 6 C6
183) [24, 18, 57] [15] 1 [24, 18, 57] 4 C4
184) [24, 126, 1569] [5] 1 [24, 126, 1569] 12 C12
185) [24, 414, 40449] [1] 1 [24, 414, 40449] 72 C2 x C36
186) [24, 194, 4009] [5, 5] 1 [24, 194, 4009] 12 C12
187) [221, 317, 15785] [1] 1 [221, 317, 15785] 144 C2 x C6 x C12
188) [413, 665, 105497] [1] 1 [413, 665, 105497] 72 C72
189) [2077, 897, 84321] [1] 1 [2077, 897, 84321] 72 C6 x C12
190) [865, 211, 9184] [1] 1 [865, 211, 9184] 144 C4 x C36
191) [764, 122, 665] [1] 1 [764, 122, 665] 72 C2 x C36
192) [893, 189, 3349] [1] 1 [893, 189, 3349] 72 C2 x C36
193) [428, 174, 721] [1] 1 [428, 174, 721] 72 C2 x C36
194) [141, 222, 10065] [1] 1 [141, 222, 10065] 72 C2 x C2 x C18
195) [141, 329, 19129] [1] 1 [141, 329, 19129] 72 C2 x C2 x C18
196) [141, 198, 777] [2, 2] 1 [141, 198, 777] 24 C2 x C12
197) [141, 157, 1897] [1] 1 [141, 157, 1897] 72 C72
198) [141, 133, 3541] [1] 1 [141, 133, 3541] 72 C3 x C24
199) [152, 474, 48721] [1] 1 [152, 474, 48721] 72 C72
200) [40, 394, 36849] [1] 1 [40, 394, 36849] 144 C12 x C12
201) [40, 406, 28249] [1] 1 [40, 406, 28249] 144 C4 x C36
202) [40, 460, 51460] [1] 2 [40, 460, 51460] 288 C2 x C4 x C36
203) [40, 334, 20049] [1] 1 [40, 334, 20049] 144 C12 x C12
204) [40, 436, 41764] [1] 2 [40, 436, 41764] 288 C4 x C72
205) [40, 42, 401] [2, 6] 1 [40, 42, 401] 36 C2 x C18
206) [40, 490, 59985] [1] 1 [40, 490, 59985] 144 C4 x C36
207) [149, 425, 44225] [1] 2 [149, 425, 44225] 144 C2 x C6 x C12
208) [149, 206, 8225] [2, 2] 1 [149, 206, 8225] 24 C24
209) [149, 377, 31025] [5] 1 [149, 377, 31025] 12 C12
210) [140, 214, 6409] [1] 1 [140, 214, 6409] 144 C4 x C36
211) [3917, 1250, 249613] [1] 1 [3917, 1250, 249613] 72 C72
212) [908, 186, 5017] [1] 1 [908, 186, 5017] 72 C72
213) [748, 130, 1233] [3] 1 [748, 130, 1233] 72 C2 x C36
214) [113, 479, 51004] [1] 1 [113, 479, 51004] 72 C2 x C36
215) [113, 591, 87292] [1] 1 [113, 591, 87292] 72 C6 x C12
216) [521, 327, 10972] [1] 1 [521, 327, 10972] 72 C2 x C36
217) [156, 800, 46276] [1] 1 [156, 800, 46276] 144 C2 x C2 x C36
218) [89, 591, 86764] [1] 1 [89, 591, 86764] 72 C2 x C36
219) [565, 225, 11385] [1] 2 [565, 225, 11385] 288 C2 x C2 x C6 x C12
220) [497, 114, 2752] [1] 1 [497, 114, 2752] 72 C2 x C36
221) [533, 221, 5681] [1] 1 [533, 221, 5681] 144 C4 x C36
222) [533, 357, 25333] [1] 2 [533, 357, 25333] 288 C2 x C4 x C36
223) [53, 966, 111177] [1] 2 [53, 966, 111177] 144 C2 x C72
224) [53, 269, 17017] [1] 1 [53, 269, 17017] 72 C2 x C2 x C18
225) [53, 176, 3451] [1] 1 [53, 176, 3451] 72 C2 x C6 x C6
226) [53, 401, 37961] [1] 1 [53, 401, 37961] 72 C2 x C2 x C18
227) [53, 661, 26537] [1] 1 [53, 661, 26537] 72 C2 x C36
228) [53, 233, 3913] [3, 3] 1 [53, 233, 3913] 36 C2 x C18
229) [53, 124, 3367] [1] 1 [53, 124, 3367] 72 C2 x C2 x C18
230) [53, 86, 1001] [4, 4] 1 [53, 86, 1001] 12 C2 x C6
231) [341, 186, 7285] [1] 1 [341, 186, 7285] 72 C2 x C36
232) [341, 192, 8875] [1] 1 [341, 192, 8875] 72 C2 x C36
233) [329, 192, 7900] [1] 1 [329, 192, 7900] 72 C2 x C36
234) [709, 253, 1645] [1] 1 [709, 253, 1645] 72 C2 x C36
235) [709, 157, 5985] [3] 1 [709, 157, 5985] 36 C2 x C18
236) [328, 330, 24273] [1] 1 [328, 330, 24273] 288 C4 x C72
237) [785, 251, 13984] [1] 1 [785, 251, 13984] 432 C12 x C36
238) [184, 238, 13425] [3] 1 [184, 238, 13425] 24 C24
239) [37, 430, 45633] [1] 1 [37, 430, 45633] 72 C2 x C2 x C18
240) [37, 118, 2889] [11] 1 [37, 118, 2889] 6 C6
241) [37, 493, 60753] [1] 1 [37, 493, 60753] 72 C2 x C6 x C6
242) [37, 918, 59129] [1] 1 [37, 918, 59129] 72 C72
243) [37, 214, 10857] [2, 2] 1 [37, 214, 10857] 24 C2 x C2 x C6
244) [37, 274, 17437] [1] 1 [37, 274, 17437] 72 C6 x C12
245) [37, 261, 2961] [3, 3] 1 [37, 261, 2961] 24 C2 x C2 x C6
246) [37, 45, 497] [9] 1 [37, 45, 497] 12 C12
247) [572, 312, 10036] [1] 2 [572, 312, 10036] 288 C4 x C72
248) [789, 117, 3225] [5] 1 [789, 117, 3225] 12 C12
249) [28, 370, 32433] [1] 1 [28, 370, 32433] 72 C6 x C12
250) [28, 416, 19716] [1] 1 [28, 416, 19716] 72 C6 x C12
251) [28, 1328, 257188] [1] 1 [28, 1328, 257188] 72 C2 x C36
252) [28, 448, 26628] [3] 1 [28, 448, 26628] 24 C2 x C12
253) [28, 286, 20001] [1] 1 [28, 286, 20001] 72 C2 x C36
254) [28, 490, 55993] [1] 1 [28, 490, 55993] 72 C2 x C36
255) [28, 998, 78649] [1] 1 [28, 998, 78649] 72 C72
256) [508, 418, 11169] [1] 1 [508, 418, 11169] 72 C2 x C36
257) [508, 106, 1666] [1] 1 [508, 106, 1666] 72 C2 x C36
258) [33, 230, 8473] [1] 1 [33, 230, 8473] 72 C2 x C36
259) [33, 214, 5872] [1] 1 [33, 214, 5872] 72 C2 x C36
260) [33, 230, 8473] [2, 2] 1 [33, 230, 8473] 72 C2 x C36
261) [33, 238, 10168] [1] 1 [33, 238, 10168] 72 C2 x C36
262) [61, 382, 35505] [2, 2] 1 [61, 382, 35505] 24 C2 x C12
263) [61, 1141, 215289] [1] 1 [61, 1141, 215289] 72 C72
264) [61, 262, 13257] [5] 1 [61, 262, 13257] 18 C18
265) [61, 457, 51465] [1] 1 [61, 457, 51465] 72 C2 x C6 x C6
266) [61, 382, 35505] [3] 1 [61, 382, 35505] 24 C2 x C12
267) [61, 505, 60325] [1] 2 [61, 505, 60325] 144 C2 x C2 x C36
268) [61, 301, 17145] [3] 1 [61, 301, 17145] 24 C2 x C12
269) [197, 59, 427] [1] 1 [197, 59, 427] 72 C2 x C36
270) [597, 209, 9577] [1] 1 [597, 209, 9577] 72 C2 x C36
271) [541, 1382, 165865] [1] 1 [541, 1382, 165865] 72 C72
272) [1101, 97, 2077] [1] 1 [1101, 97, 2077] 216 C3 x C72
273) [1249, 209, 3114] [1] 1 [1249, 209, 3114] 72 C72
274) [17, 306, 22576] [1] 1 [17, 306, 22576] 72 C2 x C2 x C18
275) [17, 338, 28408] [1] 1 [17, 338, 28408] 72 C2 x C2 x C18
276) [17, 257, 16168] [1] 1 [17, 257, 16168] 72 C2 x C2 x C18
277) [17, 144, 3484] [1] 1 [17, 144, 3484] 72 C2 x C2 x C18
278) [456, 234, 2289] [1] 1 [456, 234, 2289] 144 C4 x C36
279) [456, 282, 19425] [1] 1 [456, 282, 19425] 144 C12 x C12
280) [373, 321, 24921] [3] 2 [373, 321, 24921] 36 C2 x C18
281) [173, 381, 20677] [1] 1 [173, 381, 20677] 72 C2 x C36
282) [889, 199, 7900] [1] 1 [889, 199, 7900] 72 C72
283) [3149, 449, 11825] [1] 1 [3149, 449, 11825] 72 C2 x C36
284) [453, 245, 5833] [1] 1 [453, 245, 5833] 72 C72
285) [872, 194, 1561] [1] 1 [872, 194, 1561] 144 C2 x C2 x C36
286) [872, 204, 6916] [1] 2 [872, 204, 6916] 288 C2 x C4 x C36
287) [573, 201, 3081] [1] 1 [573, 201, 3081] 72 C2 x C36
288) [181, 417, 43065] [1] 1 [181, 417, 43065] 72 C2 x C2 x C18
289) [181, 337, 20745] [3] 1 [181, 337, 20745] 18 C18
290) [181, 1193, 322825] [1] 1 [181, 1193, 322825] 72 C72
291) [181, 142, 2145] [2, 2] 1 [181, 142, 2145] 24 C2 x C2 x C6
292) [181, 1537, 552537] [1] 2 [181, 1537, 552537] 144 C2 x C72
293) [181, 417, 43065] [3] 2 [181, 417, 43065] 72 C2 x C2 x C18
294) [133, 77, 1449] [9] 1 [133, 77, 1449] 12 C12
295) [133, 361, 26961] [1] 1 [133, 361, 26961] 72 C2 x C2 x C18
296) [133, 226, 7981] [1] 1 [133, 226, 7981] 72 C72
297) [133, 238, 12033] [2, 2] 1 [133, 238, 12033] 24 C24
298) [77, 329, 21497] [1] 1 [77, 329, 21497] 72 C2 x C2 x C18
299) [77, 286, 9361] [1] 1 [77, 286, 9361] 72 C6 x C12
300) [188, 392, 23188] [1] 2 [188, 392, 23188] 144 C2 x C2 x C36
301) [188, 134, 3737] [1] 1 [188, 134, 3737] 72 C72
302) [620, 336, 27604] [1] 2 [620, 336, 27604] 288 C4 x C72
303) [44, 216, 6340] [2, 2] 1 [44, 216, 6340] 36 C3 x C12
304) [44, 168, 3492] [3, 3] 1 [44, 168, 3492] 24 C2 x C12
305) [44, 154, 3454] [1] 1 [44, 154, 3454] 72 C2 x C36
306) [44, 254, 9793] [1] 1 [44, 254, 9793] 72 C2 x C36
307) [44, 374, 30569] [1] 1 [44, 374, 30569] 72 C2 x C36
308) [44, 326, 17945] [1] 1 [44, 326, 17945] 72 C2 x C36
309) [44, 648, 62692] [1] 1 [44, 648, 62692] 72 C2 x C36
310) [44, 362, 29945] [1] 1 [44, 362, 29945] 72 C6 x C12
311) [1157, 1001, 201617] [1] 1 [1157, 1001, 201617] 144 C144
312) [613, 193, 5481] [3] 1 [613, 193, 5481] 24 C2 x C12
313) [460, 274, 16929] [3] 1 [460, 274, 16929] 72 C2 x C2 x C18
314) [12, 142, 4849] [3] 1 [12, 142, 4849] 36 C36
315) [12, 202, 8326] [1] 1 [12, 202, 8326] 72 C2 x C36
316) [12, 18, 33] [39] 1 [12, 18, 33] 2 C2
317) [12, 498, 61953] [1] 1 [12, 498, 61953] 72 C2 x C36
318) [12, 278, 15433] [3, 3] 1 [12, 278, 15433] 24 C2 x C12
319) [12, 626, 62977] [1] 1 [12, 626, 62977] 72 C2 x C36
320) [12, 42, 249] [11] 1 [12, 42, 249] 6 C6
321) [12, 2030, 384337] [1] 2 [12, 2030, 384337] 144 C2 x C72
322) [12, 1262, 135313] [1] 1 [12, 1262, 135313] 72 C2 x C36
323) [12, 486, 59001] [1] 1 [12, 486, 59001] 72 C6 x C12
324) [12, 86, 649] [3, 9] 1 [12, 86, 649] 6 C6
325) [12, 82, 481] [3, 9] 1 [12, 82, 481] 12 C12
326) [12, 1190, 98233] [1] 1 [12, 1190, 98233] 72 C2 x C36
327) [12, 334, 7222] [1] 1 [12, 334, 7222] 72 C2 x C36
328) [12, 386, 33361] [1] 1 [12, 386, 33361] 72 C2 x C36
329) [12, 326, 22681] [2, 2] 1 [12, 326, 22681] 36 C36
330) [12, 274, 6094] [1] 1 [12, 274, 6094] 72 C2 x C36
331) [861, 81, 1425] [5] 1 [861, 81, 1425] 24 C2 x C12
332) [21, 105, 2121] [5] 1 [21, 105, 2121] 12 C2 x C6
333) [21, 686, 90433] [1] 1 [21, 686, 90433] 72 C72
334) [21, 346, 29845] [1] 1 [21, 346, 29845] 72 C2 x C36
335) [21, 294, 13209] [2, 2] 1 [21, 294, 13209] 24 C2 x C2 x C6
336) [21, 184, 6364] [1] 1 [21, 184, 6364] 72 C2 x C36
337) [21, 501, 62745] [1] 1 [21, 501, 62745] 72 C2 x C2 x C18
338) [21, 262, 14137] [1] 1 [21, 262, 14137] 72 C72
339) [21, 321, 23865] [1] 1 [21, 321, 23865] 72 C2 x C2 x C18
340) [21, 49, 553] [3, 9] 1 [21, 49, 553] 12 C12
341) [85, 241, 5149] [1] 1 [85, 241, 5149] 144 C2 x C2 x C36
342) [85, 334, 26529] [1] 1 [85, 334, 26529] 144 C4 x C36
343) [85, 325, 20265] [1] 1 [85, 325, 20265] 144 C2 x C2 x C36
344) [85, 465, 53865] [3] 2 [85, 465, 53865] 96 C2 x C2 x C2 x C12
345) [85, 445, 48465] [3] 1 [85, 445, 48465] 48 C4 x C12
346) [669, 173, 5977] [1] 1 [669, 173, 5977] 72 C3 x C24
347) [860, 216, 10804] [1] 2 [860, 216, 10804] 288 C12 x C24
348) [277, 805, 9033] [1] 1 [277, 805, 9033] 72 C72
349) [616, 202, 9585] [1] 1 [616, 202, 9585] 144 C12 x C12
350) [616, 186, 3105] [1] 1 [616, 186, 3105] 144 C4 x C36
351) [73, 403, 9924] [1] 1 [73, 403, 9924] 72 C72
352) [73, 430, 35713] [1] 1 [73, 430, 35713] 72 C72
353) [73, 295, 13708] [1] 1 [73, 295, 13708] 72 C2 x C36
354) [73, 571, 80032] [1] 1 [73, 571, 80032] 72 C2 x C36
355) [73, 499, 58144] [1] 1 [73, 499, 58144] 72 C2 x C36
356) [233, 531, 70432] [1] 1 [233, 531, 70432] 72 C2 x C36
357) [233, 230, 11128] [1] 1 [233, 230, 11128] 72 C2 x C36
358) [56, 112, 3010] [1] 1 [56, 112, 3010] 72 C2 x C2 x C18
359) [56, 242, 10105] [1] 1 [56, 242, 10105] 72 C2 x C36
360) [56, 252, 15820] [1] 1 [56, 252, 15820] 72 C2 x C2 x C18
361) [56, 126, 3745] [1] 1 [56, 126, 3745] 72 C2 x C36
362) [56, 534, 71065] [1] 1 [56, 534, 71065] 72 C2 x C36
363) [56, 238, 10577] [1] 1 [56, 238, 10577] 72 C2 x C36
364) [41, 242, 11320] [1] 1 [41, 242, 11320] 72 C2 x C2 x C18
365) [41, 294, 20584] [1] 1 [41, 294, 20584] 72 C2 x C2 x C18
366) [469, 273, 17577] [3] 2 [469, 273, 17577] 144 C2 x C2 x C6 x C6
367) [397, 925, 30393] [1] 1 [397, 925, 30393] 72 C72
368) [284, 230, 3001] [1] 1 [284, 230, 3001] 72 C72
369) [284, 210, 9250] [1] 1 [284, 210, 9250] 72 C2 x C36
370) [365, 353, 10621] [1] 1 [365, 353, 10621] 144 C4 x C36
371) [101, 453, 44005] [1] 1 [101, 453, 44005] 72 C2 x C36
372) [101, 1113, 91305] [1] 2 [101, 1113, 91305] 144 C2 x C72
373) [101, 349, 24769] [1] 1 [101, 349, 24769] 72 C6 x C12
374) [172, 166, 6201] [2, 2] 1 [172, 166, 6201] 36 C36
375) [172, 166, 6201] [3] 1 [172, 166, 6201] 36 C36
376) [1133, 781, 118217] [1] 1 [1133, 781, 118217] 72 C72
377) [717, 149, 3937] [1] 1 [717, 149, 3937] 72 C72
378) [69, 145, 3169] [1] 1 [69, 145, 3169] 72 C72
379) [69, 437, 46345] [1] 1 [69, 437, 46345] 72 C2 x C2 x C18
380) [69, 249, 993] [2, 2] 1 [69, 249, 993] 24 C24
381) [69, 2054, 61129] [1] 1 [69, 2054, 61129] 72 C72
382) [69, 417, 41385] [1] 1 [69, 417, 41385] 72 C2 x C2 x C18
383) [69, 333, 22737] [1] 1 [69, 333, 22737] 72 C2 x C2 x C18
384) [65, 343, 25756] [1] 1 [65, 343, 25756] 144 C4 x C36
385) [65, 503, 59596] [1] 1 [65, 503, 59596] 144 C4 x C36