Genus 2 Curves Database | Igusa CM Invariants Database | Quartic CM Fields Database |
An Igusa CM invariant is specified by a sequence of three polynomials [ H1(x), G2(x)/N2, G3(x)/N3], such that H1(x), G2(x), and G3(x) are in Z[x],
H1(i1) = 0, | i2 = G2(i1)/N1N2, | i3 = G3(i1)/N1N3, |
i1 = I4I6/I10, | i2 = I23I4/I10, | i3 = I22I6/I10, |
[1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] | [10] | [11] | [12] | [13] | [14] | [15] | [16] | [17] | [18] | [19] | [20] | [21] | [22] | [23] | [24] |
[49] | [50] | [51] | [52] | [53] | [54] | [55] | [56] | [57] | [58] | [59] | [60] | [61] | [62] | [63] | [64] | [65] | [66] | [67] | [68] | [69] | [70] | [71] | [72] |
Number | Igusa invariants | Conductor | Components | Quartic invariants | Class number | Class group |
1) | [109, 109, 2725] | [1] | 1 | [109, 109, 2725] | 17 | C17 |