An Igusa CM invariant is specified by a sequence of three polynomials
[ H1(x), G2(x)/N2, G3(x)/N3],
such that
H1(x), G2(x), and G3(x) are in Z[x],
H1(i1) = 0, |
i2 = G2(i1)/N1N2, |
i3 = G3(i1)/N1N3, |
where N1 = H1'(i1),
and N2 and N3 are integers, and
i1 = I4I6/I10, |
i2 = I23I4/I10, |
i3 = I22I6/I10,
|
in terms of the Igusa-Clebsch invariants
[
I2,
I4,
I6,
I10
].
Degree:
[Non-normal]
[Cyclic]
Degree 196 Igusa CM invariants of non-normal (D4) fields: 74
Number |
Igusa invariants |
Conductor |
Components |
Quartic invariants |
Class number |
Class group |
1) |
[236, 562, 2497] |
[1] |
1 |
[236, 562, 2497] |
98 |
C98 |
2) |
[88, 254, 15777] |
[1] |
1 |
[88, 254, 15777] |
98 |
C98 |
3) |
[104, 458, 6577] |
[1] |
1 |
[104, 458, 6577] |
196 |
C14 x C14 |
4) |
[205, 557, 40201] |
[1] |
1 |
[205, 557, 40201] |
196 |
C196 |
5) |
[685, 569, 42409] |
[1] |
1 |
[685, 569, 42409] |
196 |
C2 x C98 |
6) |
[517, 545, 17257] |
[1] |
1 |
[517, 545, 17257] |
98 |
C98 |
7) |
[13, 681, 108137] |
[1] |
1 |
[13, 681, 108137] |
98 |
C98 |
8) |
[13, 822, 158729] |
[1] |
1 |
[13, 822, 158729] |
98 |
C98 |
9) |
[13, 681, 86609] |
[1] |
1 |
[13, 681, 86609] |
98 |
C98 |
10) |
[8, 2182, 895369] |
[1] |
1 |
[8, 2182, 895369] |
98 |
C98 |
11) |
[8, 682, 114929] |
[1] |
1 |
[8, 682, 114929] |
98 |
C98 |
12) |
[8, 2566, 982537] |
[1] |
1 |
[8, 2566, 982537] |
98 |
C98 |
13) |
[5, 877, 187001] |
[1] |
1 |
[5, 877, 187001] |
98 |
C98 |
14) |
[5, 902, 200521] |
[1] |
1 |
[5, 902, 200521] |
98 |
C98 |
15) |
[5, 1273, 388021] |
[1] |
1 |
[5, 1273, 388021] |
98 |
C98 |
16) |
[5, 993, 243001] |
[1] |
1 |
[5, 993, 243001] |
98 |
C98 |
17) |
[5, 1753, 731701] |
[1] |
1 |
[5, 1753, 731701] |
98 |
C98 |
18) |
[5, 1806, 794929] |
[1] |
1 |
[5, 1806, 794929] |
98 |
C98 |
19) |
[29, 589, 80633] |
[1] |
1 |
[29, 589, 80633] |
98 |
C98 |
20) |
[29, 2170, 299221] |
[1] |
1 |
[29, 2170, 299221] |
98 |
C7 x C14 |
21) |
[29, 397, 30521] |
[1] |
1 |
[29, 397, 30521] |
98 |
C98 |
22) |
[24, 526, 47569] |
[1] |
1 |
[24, 526, 47569] |
98 |
C98 |
23) |
[24, 578, 47017] |
[1] |
1 |
[24, 578, 47017] |
98 |
C7 x C14 |
24) |
[24, 866, 182089] |
[1] |
1 |
[24, 866, 182089] |
98 |
C98 |
25) |
[24, 674, 87433] |
[1] |
1 |
[24, 674, 87433] |
98 |
C98 |
26) |
[1685, 177, 4041] |
[1] |
2 |
[1685, 177, 4041] |
392 |
C2 x C2 x C98 |
27) |
[1597, 221, 8617] |
[1] |
1 |
[1597, 221, 8617] |
98 |
C98 |
28) |
[781, 521, 23929] |
[1] |
1 |
[781, 521, 23929] |
98 |
C98 |
29) |
[40, 602, 47041] |
[1] |
1 |
[40, 602, 47041] |
196 |
C14 x C14 |
30) |
[40, 286, 7489] |
[1] |
1 |
[40, 286, 7489] |
196 |
C2 x C98 |
31) |
[40, 426, 33809] |
[1] |
1 |
[40, 426, 33809] |
196 |
C2 x C98 |
32) |
[149, 729, 116433] |
[1] |
2 |
[149, 729, 116433] |
196 |
C2 x C98 |
33) |
[113, 118, 1673] |
[1] |
1 |
[113, 118, 1673] |
98 |
C98 |
34) |
[89, 2310, 371401] |
[1] |
1 |
[89, 2310, 371401] |
98 |
C98 |
35) |
[53, 598, 88553] |
[1] |
1 |
[53, 598, 88553] |
98 |
C98 |
36) |
[53, 381, 14017] |
[1] |
1 |
[53, 381, 14017] |
98 |
C98 |
37) |
[37, 893, 197281] |
[1] |
1 |
[37, 893, 197281] |
98 |
C98 |
38) |
[33, 398, 20593] |
[1] |
1 |
[33, 398, 20593] |
98 |
C98 |
39) |
[17, 2678, 1166233] |
[1] |
1 |
[17, 2678, 1166233] |
98 |
C98 |
40) |
[17, 726, 109737] |
[1] |
2 |
[17, 726, 109737] |
196 |
C2 x C98 |
41) |
[17, 462, 43569] |
[1] |
2 |
[17, 462, 43569] |
196 |
C2 x C98 |
42) |
[373, 725, 110425] |
[1] |
2 |
[373, 725, 110425] |
196 |
C14 x C14 |
43) |
[173, 241, 11017] |
[1] |
1 |
[173, 241, 11017] |
98 |
C98 |
44) |
[173, 573, 50553] |
[1] |
2 |
[173, 573, 50553] |
196 |
C2 x C98 |
45) |
[181, 569, 47953] |
[1] |
1 |
[181, 569, 47953] |
98 |
C98 |
46) |
[133, 477, 24929] |
[1] |
1 |
[133, 477, 24929] |
98 |
C98 |
47) |
[1493, 265, 8225] |
[1] |
2 |
[1493, 265, 8225] |
196 |
C2 x C98 |
48) |
[44, 490, 48761] |
[1] |
1 |
[44, 490, 48761] |
98 |
C7 x C14 |
49) |
[44, 626, 58369] |
[1] |
1 |
[44, 626, 58369] |
98 |
C98 |
50) |
[44, 670, 111521] |
[1] |
1 |
[44, 670, 111521] |
98 |
C98 |
51) |
[44, 610, 84401] |
[1] |
1 |
[44, 610, 84401] |
98 |
C98 |
52) |
[389, 1457, 529837] |
[1] |
1 |
[389, 1457, 529837] |
98 |
C98 |
53) |
[389, 565, 28361] |
[1] |
1 |
[389, 565, 28361] |
98 |
C98 |
54) |
[12, 586, 42649] |
[1] |
1 |
[12, 586, 42649] |
98 |
C98 |
55) |
[12, 842, 172441] |
[1] |
1 |
[12, 842, 172441] |
98 |
C98 |
56) |
[12, 626, 95617] |
[1] |
1 |
[12, 626, 95617] |
98 |
C7 x C14 |
57) |
[12, 1846, 544729] |
[1] |
1 |
[12, 1846, 544729] |
98 |
C98 |
58) |
[12, 646, 69337] |
[1] |
1 |
[12, 646, 69337] |
98 |
C98 |
59) |
[12, 818, 166081] |
[1] |
1 |
[12, 818, 166081] |
98 |
C98 |
60) |
[12, 926, 214177] |
[1] |
1 |
[12, 926, 214177] |
98 |
C98 |
61) |
[12, 746, 119929] |
[1] |
1 |
[12, 746, 119929] |
98 |
C98 |
62) |
[21, 617, 65641] |
[1] |
1 |
[21, 617, 65641] |
98 |
C98 |
63) |
[21, 593, 83497] |
[1] |
1 |
[21, 593, 83497] |
98 |
C98 |
64) |
[21, 953, 226417] |
[1] |
1 |
[21, 953, 226417] |
98 |
C98 |
65) |
[21, 614, 82153] |
[1] |
1 |
[21, 614, 82153] |
98 |
C98 |
66) |
[21, 649, 75769] |
[1] |
1 |
[21, 649, 75769] |
98 |
C98 |
67) |
[21, 989, 244273] |
[1] |
1 |
[21, 989, 244273] |
98 |
C7 x C14 |
68) |
[85, 501, 42329] |
[1] |
1 |
[85, 501, 42329] |
196 |
C196 |
69) |
[85, 617, 79681] |
[1] |
1 |
[85, 617, 79681] |
196 |
C196 |
70) |
[277, 621, 59777] |
[1] |
2 |
[277, 621, 59777] |
196 |
C2 x C98 |
71) |
[485, 517, 2681] |
[1] |
1 |
[485, 517, 2681] |
196 |
C196 |
72) |
[41, 534, 18153] |
[1] |
2 |
[41, 534, 18153] |
196 |
C196 |
73) |
[69, 377, 14401] |
[1] |
1 |
[69, 377, 14401] |
98 |
C98 |
74) |
[69, 725, 122281] |
[1] |
1 |
[69, 725, 122281] |
98 |
C98 |