An Igusa CM invariant is specified by a sequence of three polynomials
[ H1(x), G2(x)/N2, G3(x)/N3],
such that
H1(x), G2(x), and G3(x) are in Z[x],
H1(i1) = 0, |
i2 = G2(i1)/N1N2, |
i3 = G3(i1)/N1N3, |
where N1 = H1'(i1),
and N2 and N3 are integers, and
i1 = I4I6/I10, |
i2 = I23I4/I10, |
i3 = I22I6/I10,
|
in terms of the Igusa-Clebsch invariants
[
I2,
I4,
I6,
I10
].
Degree 2 Igusa CM invariants of cyclic (C4) fields: 15
Number |
Igusa invariants |
Conductor |
Components |
Quartic invariants |
Class number |
Class group |
1) |
[13, 221, 3757] |
[1] |
2 |
[13, 221, 3757] |
4 |
C2 x C2 |
2) |
[8, 12, 18] |
[1] |
1 |
[8, 12, 18] |
2 |
C2 |
3) |
[8, 4, 2] |
[2] |
1 |
[8, 4, 2] |
1 |
C1 |
4) |
[5, 15, 45] |
[1] |
2 |
[5, 15, 45] |
4 |
C2 x C2 |
5) |
[5, 105, 2205] |
[1] |
2 |
[5, 105, 2205] |
4 |
C2 x C2 |
6) |
[5, 145, 4205] |
[1] |
2 |
[5, 145, 4205] |
4 |
C2 x C2 |
7) |
[5, 5, 5] |
[2, 2, 4] |
1 |
[5, 5, 5] |
1 |
C1 |
8) |
[5, 30, 180] |
[1] |
2 |
[5, 30, 180] |
4 |
C2 x C2 |
9) |
[5, 5, 5] |
[2, 2, 2] |
1 |
[5, 5, 5] |
1 |
C1 |
10) |
[5, 35, 245] |
[1] |
2 |
[5, 35, 245] |
4 |
C2 x C2 |
11) |
[29, 145, 725] |
[1] |
2 |
[29, 145, 725] |
4 |
C2 x C2 |
12) |
[40, 20, 10] |
[1] |
1 |
[40, 20, 10] |
4 |
C4 |
13) |
[17, 119, 3332] |
[1] |
1 |
[17, 119, 3332] |
2 |
C2 |
14) |
[17, 255, 15300] |
[1] |
2 |
[17, 255, 15300] |
4 |
C2 x C2 |
15) |
[85, 85, 765] |
[1] |
1 |
[85, 85, 765] |
4 |
C4 |