Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

An Igusa CM invariant is specified by a sequence of three polynomials [ H1(x), G2(x)/N2, G3(x)/N3], such that H1(x), G2(x), and G3(x) are in Z[x],

H1(i1) = 0, i2 = G2(i1)/N1N2, i3 = G3(i1)/N1N3,
where N1 = H1'(i1), and N2 and N3 are integers, and
i1 = I4I6/I10, i2 = I23I4/I10, i3 = I22I6/I10,

in terms of the Igusa-Clebsch invariants [ I2, I4, I6, I10 ].

Degree: [Non-normal] [Cyclic]

[2][4][6][8][10][12][14][16][18][20][22][24][26][28][30][32][34][36][38][40][42][44][46][48]
[50][52][54][56][58][60][62][64][66][68][70][72][74][76][78][80][82][84][86][88][90][92][94][96]
[98][100][102][104][106][108][110][112][114][116][118][120][122][124][126][128][130][132][134][136][138][140][142][144]
[146][148][150][152][154][156][158][160][162][164][166][168][170][172][174][176][178][180][182][184][186][188][190][192]
[194][196][198][200][202][204][206][208][210][212][214][216][218][220][222][224][226][228][230][232][234][236][238][240]
[242][244][246][248][250][252][254][256][258][260][262][264][266][268][270][272][274][276][278][280][282][284][286][288]
[290][292][294][296][298][300][302][304][306][308][310][312][314][316][318][320][322][324][326][328][330][332][334][336]
[338][340][342][344][346][348][350][352][354][356][358][360][362][364][366][368][370][372][374][376][378][380][382][384]
[386][388][390][392][394][396][398][400][402][404][406][408][410][412][414][416][418][420][422][424][426][428][430][432]
[434][436][438][440][442][444][446][448][450][452][454][456][458][460][462][464][466][468][470][472][474][476][478][480]
[482][484][486][488][490][492][494][496][498][500][502][504][506][508][510][512][514][516][518][520][522][524][526][528]
[530][532][534][536][538][540][542][544][546][548][550][552][554][556][558][560][562][564][566][568][570][572][574][576]
[578][580][582][584][586][588][590][592][594][596][598][600][602][604][606][608][610][612][614][616][618][620][622][624]
[626][628][630][632][634][636][638][640][642][644][646][648][650][652][654][656][658][660][662][664][666][668][670][672]
[674][676][678][680][682][684][686][688][690][692][694][696][698][700][702][704][706][708][710][712][714][716][718][720]
[722][724][726][728][730][732][734][736][738][740][742][744][746][748][750][752][754][756][758][760][762][764][766][768]
[770][772][774][776][778][780][782][784][786][788][790][792][794][796][798][800][802][804][806][808][810][812][814][816]
[818][820][822][824][826][828][830][832][834][836][838][840][842][844][846][848][850][852][854][856][858][860][862][864]
[1106][1108][1110][1112][1114][1116][1118][1120][1122][1124][1126][1128][1130][1132][1134][1136][1138][1140][1142][1144][1146][1148][1150][1152]

Degree 224 Igusa CM invariants of non-normal (D4) fields: 299

Number Igusa invariants Conductor Components Quartic invariants Class number Class group
1) [1717, 161, 2617] [1] 1 [1717, 161, 2617] 224 C2 x C112
2) [2429, 793, 108025] [1] 1 [2429, 793, 108025] 336 C2 x C168
3) [165, 566, 37849] [1] 1 [165, 566, 37849] 224 C4 x C56
4) [344, 514, 7913] [1] 1 [344, 514, 7913] 112 C2 x C56
5) [157, 1825, 821313] [1] 1 [157, 1825, 821313] 112 C2 x C56
6) [1829, 1073, 232505] [1] 1 [1829, 1073, 232505] 112 C2 x C56
7) [1749, 149, 5113] [1] 1 [1749, 149, 5113] 224 C2 x C112
8) [60, 494, 37009] [1] 1 [60, 494, 37009] 224 C2 x C2 x C56
9) [60, 430, 34465] [1] 1 [60, 430, 34465] 224 C4 x C56
10) [60, 346, 10489] [1] 1 [60, 346, 10489] 224 C2 x C112
11) [681, 307, 23392] [1] 1 [681, 307, 23392] 112 C2 x C56
12) [229, 921, 96129] [1] 2 [229, 921, 96129] 672 C2 x C2 x C168
13) [433, 1110, 245673] [1] 2 [433, 1110, 245673] 224 C4 x C56
14) [301, 653, 51745] [1] 1 [301, 653, 51745] 112 C2 x C56
15) [629, 321, 21829] [1] 1 [629, 321, 21829] 224 C2 x C2 x C56
16) [269, 1030, 157625] [1] 1 [269, 1030, 157625] 112 C2 x C56
17) [3637, 225, 4473] [1] 2 [3637, 225, 4473] 224 C2 x C2 x C56
18) [236, 458, 43945] [1] 1 [236, 458, 43945] 112 C2 x C2 x C28
19) [236, 1238, 223625] [1] 1 [236, 1238, 223625] 112 C112
20) [88, 578, 63721] [1] 1 [88, 578, 63721] 112 C2 x C56
21) [120, 434, 20089] [1] 1 [120, 434, 20089] 224 C2 x C2 x C56
22) [120, 686, 94129] [1] 2 [120, 686, 94129] 448 C2 x C2 x C2 x C56
23) [1128, 410, 13825] [1] 2 [1128, 410, 13825] 448 C2 x C2 x C2 x C56
24) [296, 498, 61705] [1] 1 [296, 498, 61705] 224 C2 x C4 x C28
25) [429, 545, 17521] [1] 1 [429, 545, 17521] 224 C2 x C112
26) [1480, 266, 4369] [1] 1 [1480, 266, 4369] 448 C2 x C2 x C112
27) [357, 533, 15241] [1] 1 [357, 533, 15241] 224 C4 x C56
28) [104, 654, 73233] [1] 2 [104, 654, 73233] 448 C2 x C2 x C2 x C56
29) [2444, 818, 157505] [1] 1 [2444, 818, 157505] 224 C4 x C56
30) [213, 497, 16969] [1] 1 [213, 497, 16969] 112 C2 x C56
31) [213, 457, 43213] [1] 1 [213, 457, 43213] 112 C112
32) [161, 527, 66172] [1] 1 [161, 527, 66172] 112 C4 x C28
33) [109, 1497, 530577] [1] 1 [109, 1497, 530577] 112 C2 x C56
34) [109, 606, 48209] [1] 1 [109, 606, 48209] 112 C2 x C56
35) [97, 595, 88288] [1] 1 [97, 595, 88288] 112 C2 x C56
36) [733, 545, 33025] [1] 2 [733, 545, 33025] 672 C672
37) [2845, 65, 345] [1] 1 [2845, 65, 345] 224 C4 x C56
38) [57, 559, 76396] [1] 1 [57, 559, 76396] 112 C2 x C56
39) [205, 406, 37929] [1] 1 [205, 406, 37929] 224 C4 x C56
40) [309, 505, 7441] [1] 1 [309, 505, 7441] 112 C112
41) [309, 757, 125881] [1] 1 [309, 757, 125881] 112 C112
42) [380, 546, 19809] [1] 2 [380, 546, 19809] 448 C2 x C2 x C2 x C2 x C28
43) [380, 1040, 260900] [1] 1 [380, 1040, 260900] 224 C2 x C112
44) [1869, 89, 1513] [1] 1 [1869, 89, 1513] 224 C2 x C2 x C56
45) [421, 701, 99169] [1] 1 [421, 701, 99169] 112 C2 x C56
46) [421, 1077, 129897] [1] 1 [421, 1077, 129897] 112 C2 x C56
47) [716, 598, 63625] [1] 1 [716, 598, 63625] 112 C112
48) [716, 282, 17017] [1] 1 [716, 282, 17017] 112 C2 x C2 x C28
49) [716, 634, 89033] [1] 1 [716, 634, 89033] 112 C2 x C56
50) [685, 265, 3685] [1] 1 [685, 265, 3685] 224 C4 x C56
51) [136, 418, 32665] [1] 1 [136, 418, 32665] 224 C4 x C56
52) [253, 785, 139825] [1] 2 [253, 785, 139825] 224 C2 x C2 x C56
53) [517, 1105, 128313] [1] 1 [517, 1105, 128313] 112 C2 x C56
54) [1628, 1106, 201617] [1] 1 [1628, 1106, 201617] 224 C2 x C112
55) [209, 358, 1945] [1] 1 [209, 358, 1945] 112 C2 x C56
56) [209, 503, 59020] [1] 1 [209, 503, 59020] 112 C2 x C2 x C28
57) [217, 427, 33376] [1] 1 [217, 427, 33376] 112 C2 x C56
58) [493, 934, 91881] [1] 1 [493, 934, 91881] 224 C4 x C56
59) [13, 1845, 842553] [1] 2 [13, 1845, 842553] 224 C2 x C2 x C56
60) [13, 753, 140033] [1] 1 [13, 753, 140033] 112 C112
61) [13, 1769, 769441] [1] 1 [13, 1769, 769441] 112 C112
62) [13, 1517, 572953] [1] 1 [13, 1517, 572953] 112 C2 x C56
63) [13, 1809, 807561] [1] 2 [13, 1809, 807561] 224 C2 x C2 x C56
64) [13, 1201, 355137] [1] 1 [13, 1201, 355137] 112 C2 x C56
65) [13, 593, 71529] [1] 1 [13, 593, 71529] 112 C2 x C56
66) [13, 457, 30889] [1] 1 [13, 457, 30889] 112 C2 x C56
67) [13, 1949, 947281] [1] 1 [13, 1949, 947281] 112 C112
68) [13, 1742, 741793] [1] 1 [13, 1742, 741793] 112 C2 x C56
69) [76, 710, 101401] [1] 1 [76, 710, 101401] 112 C2 x C56
70) [1741, 957, 37017] [1] 2 [1741, 957, 37017] 224 C4 x C56
71) [8, 766, 142817] [1] 1 [8, 766, 142817] 112 C2 x C56
72) [8, 1018, 259073] [1] 1 [8, 1018, 259073] 112 C112
73) [8, 1166, 263057] [1] 1 [8, 1166, 263057] 112 C112
74) [8, 1550, 561425] [1] 2 [8, 1550, 561425] 224 C2 x C112
75) [8, 682, 110449] [1] 1 [8, 682, 110449] 112 C2 x C56
76) [8, 622, 95921] [1] 1 [8, 622, 95921] 112 C2 x C56
77) [8, 670, 87137] [1] 1 [8, 670, 87137] 112 C112
78) [8, 958, 229313] [1] 1 [8, 958, 229313] 112 C2 x C2 x C28
79) [8, 970, 234577] [1] 1 [8, 970, 234577] 112 C2 x C2 x C28
80) [5, 1961, 961169] [1] 1 [5, 1961, 961169] 112 C2 x C56
81) [5, 1013, 233761] [1] 1 [5, 1013, 233761] 112 C2 x C56
82) [5, 1430, 448505] [1] 1 [5, 1430, 448505] 112 C2 x C56
83) [5, 1886, 888929] [1] 1 [5, 1886, 888929] 112 C112
84) [5, 1141, 321409] [1] 1 [5, 1141, 321409] 112 C2 x C56
85) [5, 2045, 1045505] [1] 1 [5, 2045, 1045505] 112 C2 x C56
86) [5, 1613, 645161] [1] 1 [5, 1613, 645161] 112 C2 x C56
87) [5, 1901, 900449] [1] 1 [5, 1901, 900449] 112 C2 x C56
88) [5, 1838, 842561] [1] 1 [5, 1838, 842561] 112 C112
89) [5, 1390, 476545] [1] 1 [5, 1390, 476545] 112 C2 x C56
90) [5, 982, 240761] [1] 1 [5, 982, 240761] 112 C112
91) [5, 1681, 705529] [1] 1 [5, 1681, 705529] 112 C2 x C56
92) [5, 1805, 806305] [1] 1 [5, 1805, 806305] 112 C2 x C56
93) [5, 1182, 286561] [1] 1 [5, 1182, 286561] 112 C2 x C56
94) [5, 1841, 838289] [1] 1 [5, 1841, 838289] 112 C112
95) [5, 1525, 514705] [1] 1 [5, 1525, 514705] 112 C2 x C56
96) [5, 1661, 681529] [1] 1 [5, 1661, 681529] 112 C2 x C56
97) [5, 1501, 561889] [1] 1 [5, 1501, 561889] 112 C112
98) [5, 1481, 474529] [1] 1 [5, 1481, 474529] 112 C2 x C56
99) [5, 1550, 596705] [1] 1 [5, 1550, 596705] 112 C2 x C56
100) [5, 1981, 980809] [1] 1 [5, 1981, 980809] 112 C2 x C56
101) [268, 470, 45577] [1] 1 [268, 470, 45577] 112 C2 x C2 x C28
102) [29, 733, 115465] [1] 1 [29, 733, 115465] 112 C2 x C56
103) [29, 1009, 254513] [1] 1 [29, 1009, 254513] 112 C2 x C56
104) [29, 494, 56833] [1] 1 [29, 494, 56833] 112 C2 x C56
105) [29, 1141, 128089] [1] 1 [29, 1141, 128089] 112 C2 x C56
106) [29, 838, 168137] [1] 1 [29, 838, 168137] 112 C112
107) [29, 1421, 408929] [1] 1 [29, 1421, 408929] 112 C2 x C56
108) [29, 1337, 446537] [1] 2 [29, 1337, 446537] 224 C2 x C2 x C56
109) [29, 925, 212681] [1] 1 [29, 925, 212681] 112 C2 x C56
110) [92, 594, 87841] [1] 1 [92, 594, 87841] 112 C2 x C56
111) [92, 482, 5089] [1] 1 [92, 482, 5089] 112 C2 x C56
112) [92, 742, 119609] [1] 2 [92, 742, 119609] 224 C2 x C2 x C56
113) [92, 466, 30737] [1] 1 [92, 466, 30737] 112 C2 x C56
114) [1804, 1074, 223425] [1] 1 [1804, 1074, 223425] 224 C2 x C112
115) [124, 434, 29233] [1] 1 [124, 434, 29233] 112 C2 x C2 x C28
116) [3341, 365, 12425] [1] 2 [3341, 365, 12425] 896 C2 x C8 x C56
117) [440, 142, 3281] [1] 1 [440, 142, 3281] 224 C2 x C112
118) [1645, 197, 6001] [1] 1 [1645, 197, 6001] 224 C2 x C112
119) [2221, 925, 200025] [1] 2 [2221, 925, 200025] 224 C2 x C2 x C56
120) [93, 103, 2071] [1] 1 [93, 103, 2071] 112 C2 x C56
121) [93, 833, 166753] [1] 2 [93, 833, 166753] 224 C2 x C112
122) [93, 557, 58009] [1] 1 [93, 557, 58009] 112 C112
123) [93, 497, 39409] [1] 1 [93, 497, 39409] 112 C112
124) [93, 638, 64561] [1] 1 [93, 638, 64561] 112 C2 x C56
125) [93, 457, 45493] [1] 1 [93, 457, 45493] 112 C2 x C56
126) [589, 1609, 604665] [1] 1 [589, 1609, 604665] 112 C2 x C56
127) [589, 349, 29125] [1] 1 [589, 349, 29125] 112 C4 x C28
128) [1357, 1309, 387321] [1] 1 [1357, 1309, 387321] 112 C2 x C56
129) [933, 1361, 360217] [1] 1 [933, 1361, 360217] 112 C2 x C56
130) [757, 501, 8057] [1] 1 [757, 501, 8057] 112 C112
131) [2701, 637, 19737] [1] 1 [2701, 637, 19737] 224 C4 x C56
132) [1901, 1013, 176225] [1] 1 [1901, 1013, 176225] 336 C2 x C168
133) [24, 634, 100465] [1] 1 [24, 634, 100465] 112 C2 x C56
134) [24, 830, 171841] [1] 1 [24, 830, 171841] 112 C2 x C56
135) [24, 542, 51841] [1] 1 [24, 542, 51841] 112 C2 x C56
136) [24, 638, 85537] [1] 1 [24, 638, 85537] 112 C2 x C56
137) [221, 1022, 133825] [1] 1 [221, 1022, 133825] 224 C4 x C56
138) [1205, 381, 11889] [1] 2 [1205, 381, 11889] 448 C2 x C2 x C112
139) [1597, 1029, 88641] [1] 2 [1597, 1029, 88641] 224 C2 x C2 x C56
140) [3445, 313, 2961] [1] 1 [3445, 313, 2961] 448 C4 x C112
141) [428, 968, 7844] [1] 1 [428, 968, 7844] 112 C112
142) [408, 394, 28609] [1] 1 [408, 394, 28609] 224 C4 x C56
143) [141, 677, 22897] [1] 1 [141, 677, 22897] 112 C112
144) [141, 542, 17041] [1] 1 [141, 542, 17041] 112 C112
145) [141, 533, 41377] [1] 1 [141, 533, 41377] 112 C2 x C56
146) [141, 1865, 861625] [1] 1 [141, 1865, 861625] 112 C2 x C56
147) [141, 641, 80689] [1] 1 [141, 641, 80689] 112 C112
148) [141, 389, 37513] [1] 1 [141, 389, 37513] 112 C2 x C56
149) [152, 908, 30404] [1] 1 [152, 908, 30404] 112 C112
150) [417, 427, 42976] [1] 1 [417, 427, 42976] 112 C2 x C56
151) [40, 746, 121489] [1] 1 [40, 746, 121489] 224 C2 x C2 x C56
152) [728, 266, 11137] [1] 1 [728, 266, 11137] 224 C4 x C56
153) [149, 469, 19193] [1] 1 [149, 469, 19193] 112 C112
154) [149, 1049, 206225] [1] 1 [149, 1049, 206225] 112 C112
155) [149, 87, 1855] [1] 1 [149, 87, 1855] 112 C2 x C2 x C28
156) [149, 1013, 12145] [1] 1 [149, 1013, 12145] 112 C2 x C56
157) [1541, 1097, 161777] [1] 1 [1541, 1097, 161777] 112 C2 x C56
158) [140, 666, 90729] [1] 2 [140, 666, 90729] 448 C2 x C4 x C56
159) [140, 442, 13001] [1] 1 [140, 442, 13001] 224 C2 x C2 x C56
160) [509, 353, 20845] [1] 1 [509, 353, 20845] 112 C4 x C28
161) [113, 551, 73612] [1] 1 [113, 551, 73612] 112 C2 x C2 x C28
162) [1229, 385, 22001] [1] 2 [1229, 385, 22001] 672 C4 x C168
163) [2365, 753, 8721] [1] 1 [2365, 753, 8721] 224 C2 x C2 x C56
164) [857, 215, 9628] [1] 1 [857, 215, 9628] 112 C2 x C56
165) [168, 490, 22225] [1] 2 [168, 490, 22225] 448 C2 x C2 x C2 x C56
166) [168, 466, 46057] [1] 1 [168, 466, 46057] 224 C4 x C56
167) [168, 266, 16177] [1] 1 [168, 266, 16177] 224 C2 x C2 x C56
168) [156, 434, 7153] [1] 1 [156, 434, 7153] 224 C2 x C2 x C2 x C28
169) [497, 359, 22156] [1] 1 [497, 359, 22156] 112 C2 x C56
170) [53, 131, 4171] [1] 1 [53, 131, 4171] 112 C2 x C56
171) [53, 565, 27217] [1] 1 [53, 565, 27217] 112 C112
172) [53, 718, 107681] [1] 1 [53, 718, 107681] 112 C112
173) [53, 725, 116977] [1] 1 [53, 725, 116977] 112 C4 x C28
174) [53, 973, 236033] [1] 2 [53, 973, 236033] 224 C4 x C56
175) [53, 111, 2431] [1] 1 [53, 111, 2431] 112 C2 x C2 x C28
176) [1941, 1077, 289497] [1] 1 [1941, 1077, 289497] 112 C112
177) [1189, 1033, 16785] [1] 1 [1189, 1033, 16785] 224 C2 x C112
178) [332, 410, 30073] [1] 1 [332, 410, 30073] 112 C2 x C56
179) [328, 350, 18817] [1] 1 [328, 350, 18817] 448 C2 x C4 x C56
180) [712, 506, 6337] [1] 1 [712, 506, 6337] 224 C2 x C112
181) [37, 1473, 490401] [1] 1 [37, 1473, 490401] 112 C2 x C56
182) [37, 1001, 250417] [1] 1 [37, 1001, 250417] 112 C112
183) [37, 1001, 216081] [1] 1 [37, 1001, 216081] 112 C2 x C56
184) [37, 585, 77777] [1] 1 [37, 585, 77777] 112 C2 x C56
185) [37, 1269, 300609] [1] 2 [37, 1269, 300609] 224 C2 x C2 x C56
186) [1149, 389, 3073] [1] 1 [1149, 389, 3073] 112 C112
187) [789, 229, 3445] [1] 1 [789, 229, 3445] 112 C2 x C56
188) [789, 241, 9589] [1] 1 [789, 241, 9589] 112 C112
189) [364, 278, 6217] [1] 1 [364, 278, 6217] 224 C2 x C2 x C56
190) [2557, 81, 1001] [1] 1 [2557, 81, 1001] 336 C2 x C168
191) [28, 726, 118217] [1] 2 [28, 726, 118217] 224 C2 x C112
192) [28, 770, 132097] [1] 1 [28, 770, 132097] 112 C2 x C2 x C28
193) [28, 558, 23633] [1] 1 [28, 558, 23633] 112 C112
194) [28, 890, 197017] [1] 1 [28, 890, 197017] 112 C2 x C56
195) [28, 698, 96601] [1] 1 [28, 698, 96601] 112 C112
196) [28, 546, 29729] [1] 1 [28, 546, 29729] 112 C2 x C2 x C28
197) [28, 514, 65041] [1] 1 [28, 514, 65041] 112 C2 x C56
198) [777, 247, 10396] [1] 1 [777, 247, 10396] 448 C8 x C56
199) [445, 1213, 231561] [1] 1 [445, 1213, 231561] 448 C8 x C56
200) [412, 530, 10897] [1] 1 [412, 530, 10897] 112 C2 x C56
201) [501, 1317, 313257] [1] 1 [501, 1317, 313257] 112 C112
202) [33, 710, 112825] [1] 2 [33, 710, 112825] 224 C2 x C112
203) [61, 91, 835] [1] 1 [61, 91, 835] 112 C2 x C56
204) [61, 689, 102073] [1] 1 [61, 689, 102073] 112 C112
205) [197, 63, 943] [1] 1 [197, 63, 943] 112 C4 x C28
206) [197, 1353, 439873] [1] 1 [197, 1353, 439873] 112 C112
207) [597, 989, 17521] [1] 1 [597, 989, 17521] 112 C112
208) [597, 289, 2821] [1] 1 [597, 289, 2821] 112 C2 x C56
209) [597, 1269, 259161] [1] 1 [597, 1269, 259161] 112 C2 x C56
210) [541, 1165, 173625] [1] 1 [541, 1165, 173625] 112 C2 x C56
211) [1101, 1493, 554785] [1] 1 [1101, 1493, 554785] 336 C2 x C168
212) [1085, 1025, 1985] [1] 1 [1085, 1025, 1985] 224 C4 x C56
213) [732, 250, 3913] [1] 1 [732, 250, 3913] 224 C4 x C56
214) [1661, 189, 5193] [1] 2 [1661, 189, 5193] 224 C4 x C56
215) [664, 1278, 384417] [1] 2 [664, 1278, 384417] 224 C2 x C112
216) [456, 634, 63553] [1] 1 [456, 634, 63553] 224 C2 x C112
217) [264, 446, 23329] [1] 1 [264, 446, 23329] 224 C2 x C2 x C56
218) [173, 457, 10649] [1] 1 [173, 457, 10649] 112 C112
219) [453, 533, 11113] [1] 1 [453, 533, 11113] 112 C112
220) [1589, 217, 1841] [1] 1 [1589, 217, 1841] 112 C112
221) [1469, 1049, 80825] [1] 1 [1469, 1049, 80825] 224 C4 x C56
222) [1469, 285, 17001] [1] 2 [1469, 285, 17001] 448 C2 x C2 x C112
223) [645, 521, 9649] [1] 1 [645, 521, 9649] 224 C2 x C2 x C56
224) [3877, 109, 2001] [1] 1 [3877, 109, 2001] 336 C2 x C168
225) [2509, 733, 58425] [1] 1 [2509, 733, 58425] 224 C4 x C56
226) [573, 1581, 573177] [1] 1 [573, 1581, 573177] 112 C112
227) [573, 1001, 32617] [1] 2 [573, 1001, 32617] 224 C2 x C2 x C56
228) [2204, 818, 26225] [1] 1 [2204, 818, 26225] 224 C2 x C2 x C56
229) [181, 757, 34617] [1] 1 [181, 757, 34617] 112 C2 x C56
230) [181, 1209, 345465] [1] 2 [181, 1209, 345465] 224 C2 x C2 x C56
231) [133, 425, 44857] [1] 1 [133, 425, 44857] 112 C2 x C56
232) [133, 686, 98497] [1] 1 [133, 686, 98497] 112 C112
233) [761, 263, 15580] [1] 1 [761, 263, 15580] 336 C2 x C2 x C84
234) [1484, 952, 153860] [1] 1 [1484, 952, 153860] 224 C2 x C112
235) [2008, 994, 196809] [1] 1 [2008, 994, 196809] 112 C112
236) [1261, 1197, 219177] [1] 2 [1261, 1197, 219177] 448 C2 x C4 x C56
237) [77, 609, 92701] [1] 1 [77, 609, 92701] 112 C2 x C2 x C28
238) [77, 422, 33433] [1] 1 [77, 422, 33433] 112 C112
239) [77, 119, 3367] [1] 1 [77, 119, 3367] 112 C2 x C2 x C28
240) [77, 981, 240417] [1] 2 [77, 981, 240417] 224 C2 x C112
241) [77, 462, 48433] [1] 1 [77, 462, 48433] 112 C2 x C2 x C28
242) [77, 798, 148113] [1] 2 [77, 798, 148113] 224 C2 x C2 x C56
243) [620, 306, 13489] [1] 1 [620, 306, 13489] 224 C2 x C4 x C28
244) [44, 930, 214641] [1] 2 [44, 930, 214641] 224 C2 x C2 x C56
245) [613, 605, 57025] [1] 2 [613, 605, 57025] 224 C224
246) [460, 346, 13369] [1] 1 [460, 346, 13369] 224 C2 x C2 x C56
247) [12, 986, 242857] [1] 1 [12, 986, 242857] 112 C2 x C56
248) [12, 1610, 604825] [1] 2 [12, 1610, 604825] 224 C2 x C112
249) [12, 406, 30409] [1] 1 [12, 406, 30409] 112 C2 x C56
250) [12, 842, 115033] [1] 1 [12, 842, 115033] 112 C112
251) [21, 1206, 330009] [1] 1 [21, 1206, 330009] 112 C2 x C56
252) [21, 949, 60673] [1] 1 [21, 949, 60673] 112 C2 x C56
253) [21, 709, 104833] [1] 1 [21, 709, 104833] 112 C112
254) [21, 601, 30193] [1] 1 [21, 601, 30193] 112 C2 x C56
255) [21, 1313, 317545] [1] 1 [21, 1313, 317545] 112 C2 x C56
256) [21, 721, 119329] [1] 1 [21, 721, 119329] 112 C112
257) [21, 854, 176953] [1] 1 [21, 854, 176953] 112 C2 x C56
258) [21, 654, 50145] [1] 1 [21, 654, 50145] 112 C2 x C56
259) [21, 929, 214873] [1] 1 [21, 929, 214873] 112 C112
260) [21, 869, 187273] [1] 1 [21, 869, 187273] 112 C112
261) [21, 974, 236833] [1] 1 [21, 974, 236833] 112 C2 x C56
262) [21, 469, 49273] [1] 1 [21, 469, 49273] 112 C112
263) [21, 574, 55153] [1] 1 [21, 574, 55153] 112 C112
264) [21, 910, 204001] [1] 1 [21, 910, 204001] 112 C2 x C56
265) [21, 833, 171577] [1] 1 [21, 833, 171577] 112 C2 x C56
266) [21, 1193, 283945] [1] 1 [21, 1193, 283945] 112 C2 x C56
267) [85, 1353, 338121] [1] 1 [85, 1353, 338121] 224 C4 x C56
268) [85, 869, 184009] [1] 1 [85, 869, 184009] 224 C4 x C56
269) [85, 1053, 42921] [1] 2 [85, 1053, 42921] 448 C2 x C4 x C56
270) [85, 1581, 592569] [1] 1 [85, 1581, 592569] 224 C4 x C56
271) [749, 273, 18445] [1] 1 [749, 273, 18445] 112 C2 x C2 x C28
272) [741, 1065, 56625] [1] 1 [741, 1065, 56625] 224 C2 x C2 x C56
273) [73, 121, 3496] [1] 1 [73, 121, 3496] 112 C2 x C2 x C28
274) [56, 558, 69777] [1] 2 [56, 558, 69777] 224 C2 x C112
275) [56, 670, 85121] [1] 1 [56, 670, 85121] 112 C112
276) [856, 202, 2497] [1] 1 [856, 202, 2497] 112 C112
277) [856, 1282, 266217] [1] 1 [856, 1282, 266217] 112 C112
278) [2869, 613, 93225] [1] 1 [2869, 613, 93225] 112 C2 x C56
279) [469, 1549, 537825] [1] 1 [469, 1549, 537825] 336 C2 x C168
280) [469, 525, 6881] [1] 1 [469, 525, 6881] 336 C2 x C168
281) [284, 434, 36865] [1] 1 [284, 434, 36865] 112 C2 x C56
282) [284, 498, 60865] [1] 1 [284, 498, 60865] 112 C2 x C2 x C28
283) [365, 729, 112329] [1] 2 [365, 729, 112329] 448 C4 x C112
284) [721, 203, 5796] [1] 1 [721, 203, 5796] 112 C112
285) [101, 913, 205337] [1] 2 [101, 913, 205337] 224 C224
286) [101, 753, 130617] [1] 2 [101, 753, 130617] 224 C2 x C112
287) [101, 1281, 268209] [1] 2 [101, 1281, 268209] 224 C2 x C112
288) [481, 403, 39520] [1] 1 [481, 403, 39520] 224 C2 x C4 x C28
289) [1981, 1045, 260625] [1] 2 [1981, 1045, 260625] 224 C2 x C2 x C56
290) [1861, 973, 102225] [1] 1 [1861, 973, 102225] 112 C2 x C56
291) [381, 1278, 402225] [1] 1 [381, 1278, 402225] 112 C2 x C56
292) [69, 337, 28237] [1] 1 [69, 337, 28237] 112 C2 x C56
293) [69, 382, 18817] [1] 1 [69, 382, 18817] 112 C112
294) [69, 478, 52705] [1] 1 [69, 478, 52705] 112 C2 x C56
295) [69, 469, 50005] [1] 1 [69, 469, 50005] 112 C2 x C56
296) [69, 509, 48193] [1] 1 [69, 509, 48193] 112 C112
297) [69, 1677, 684297] [1] 1 [69, 1677, 684297] 112 C112
298) [488, 402, 39913] [1] 1 [488, 402, 39913] 224 C2 x C2 x C56
299) [488, 354, 19129] [1] 1 [488, 354, 19129] 224 C4 x C56