Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

An Igusa CM invariant is specified by a sequence of three polynomials [ H1(x), G2(x)/N2, G3(x)/N3], such that H1(x), G2(x), and G3(x) are in Z[x],

H1(i1) = 0, i2 = G2(i1)/N1N2, i3 = G3(i1)/N1N3,
where N1 = H1'(i1), and N2 and N3 are integers, and
i1 = I4I6/I10, i2 = I23I4/I10, i3 = I22I6/I10,

in terms of the Igusa-Clebsch invariants [ I2, I4, I6, I10 ].

Degree: [Non-normal] [Cyclic]

[2][4][6][8][10][12][14][16][18][20][22][24][26][28][30][32][34][36][38][40][42][44][46][48]
[50][52][54][56][58][60][62][64][66][68][70][72][74][76][78][80][82][84][86][88][90][92][94][96]
[98][100][102][104][106][108][110][112][114][116][118][120][122][124][126][128][130][132][134][136][138][140][142][144]
[146][148][150][152][154][156][158][160][162][164][166][168][170][172][174][176][178][180][182][184][186][188][190][192]
[194][196][198][200][202][204][206][208][210][212][214][216][218][220][222][224][226][228][230][232][234][236][238][240]
[242][244][246][248][250][252][254][256][258][260][262][264][266][268][270][272][274][276][278][280][282][284][286][288]
[290][292][294][296][298][300][302][304][306][308][310][312][314][316][318][320][322][324][326][328][330][332][334][336]
[338][340][342][344][346][348][350][352][354][356][358][360][362][364][366][368][370][372][374][376][378][380][382][384]
[386][388][390][392][394][396][398][400][402][404][406][408][410][412][414][416][418][420][422][424][426][428][430][432]
[434][436][438][440][442][444][446][448][450][452][454][456][458][460][462][464][466][468][470][472][474][476][478][480]
[482][484][486][488][490][492][494][496][498][500][502][504][506][508][510][512][514][516][518][520][522][524][526][528]
[530][532][534][536][538][540][542][544][546][548][550][552][554][556][558][560][562][564][566][568][570][572][574][576]
[578][580][582][584][586][588][590][592][594][596][598][600][602][604][606][608][610][612][614][616][618][620][622][624]
[626][628][630][632][634][636][638][640][642][644][646][648][650][652][654][656][658][660][662][664][666][668][670][672]
[674][676][678][680][682][684][686][688][690][692][694][696][698][700][702][704][706][708][710][712][714][716][718][720]
[722][724][726][728][730][732][734][736][738][740][742][744][746][748][750][752][754][756][758][760][762][764][766][768]
[770][772][774][776][778][780][782][784][786][788][790][792][794][796][798][800][802][804][806][808][810][812][814][816]
[818][820][822][824][826][828][830][832][834][836][838][840][842][844][846][848][850][852][854][856][858][860][862][864]
[1106][1108][1110][1112][1114][1116][1118][1120][1122][1124][1126][1128][1130][1132][1134][1136][1138][1140][1142][1144][1146][1148][1150][1152]

Degree 300 Igusa CM invariants of non-normal (D4) fields: 42

Number Igusa invariants Conductor Components Quartic invariants Class number Class group
1) [317, 349, 29737] [1] 1 [317, 349, 29737] 150 C150
2) [137, 1278, 300913] [1] 1 [137, 1278, 300913] 150 C5 x C30
3) [296, 610, 90361] [1] 1 [296, 610, 90361] 300 C5 x C60
4) [129, 1399, 458308] [1] 1 [129, 1399, 458308] 150 C150
5) [104, 384, 34264] [1] 1 [104, 384, 34264] 300 C300
6) [104, 1110, 306361] [1] 1 [104, 1110, 306361] 300 C300
7) [104, 1014, 106873] [1] 1 [104, 1014, 106873] 300 C300
8) [161, 1719, 727108] [1] 1 [161, 1719, 727108] 150 C150
9) [161, 1590, 621721] [1] 1 [161, 1590, 621721] 150 C150
10) [1592, 906, 12577] [1] 1 [1592, 906, 12577] 150 C150
11) [377, 1743, 757156] [1] 1 [377, 1743, 757156] 300 C300
12) [217, 967, 233284] [1] 1 [217, 967, 233284] 150 C150
13) [13, 150, 5417] [4, 4] 1 [13, 150, 5417] 25 C25
14) [5, 1534, 570289] [1] 1 [5, 1534, 570289] 150 C150
15) [29, 1361, 383149] [1] 1 [29, 1361, 383149] 150 C5 x C30
16) [29, 757, 128581] [1] 1 [29, 757, 128581] 150 C150
17) [93, 721, 59629] [1] 1 [93, 721, 59629] 150 C150
18) [93, 1105, 129277] [1] 1 [93, 1105, 129277] 150 C5 x C30
19) [3241, 319, 18148] [1] 1 [3241, 319, 18148] 150 C150
20) [40, 982, 66841] [1] 1 [40, 982, 66841] 300 C10 x C30
21) [113, 1022, 244849] [1] 1 [113, 1022, 244849] 150 C5 x C30
22) [89, 1887, 889636] [1] 1 [89, 1887, 889636] 150 C150
23) [305, 547, 41176] [1] 1 [305, 547, 41176] 300 C300
24) [281, 1310, 388561] [1] 1 [281, 1310, 388561] 150 C150
25) [184, 454, 25033] [1] 1 [184, 454, 25033] 150 C150
26) [28, 1102, 133249] [1] 1 [28, 1102, 133249] 150 C150
27) [28, 1030, 249097] [1] 1 [28, 1030, 249097] 150 C150
28) [373, 265, 16717] [1] 1 [373, 265, 16717] 150 C150
29) [2813, 497, 4789] [1] 1 [2813, 497, 4789] 300 C10 x C30
30) [77, 921, 153829] [1] 1 [77, 921, 153829] 150 C150
31) [44, 1518, 546337] [1] 1 [44, 1518, 546337] 150 C150
32) [56, 1450, 464641] [1] 1 [56, 1450, 464641] 150 C150
33) [41, 1811, 817624] [1] 1 [41, 1811, 817624] 150 C150
34) [353, 269, 10942] [1] 1 [353, 269, 10942] 150 C150
35) [353, 1287, 329284] [1] 1 [353, 1287, 329284] 150 C150
36) [929, 1335, 378436] [1] 1 [929, 1335, 378436] 150 C150
37) [65, 453, 51286] [1] 1 [65, 453, 51286] 300 C300
38) [65, 1019, 168184] [1] 1 [65, 1019, 168184] 300 C300
39) [65, 1742, 749281] [1] 1 [65, 1742, 749281] 300 C5 x C60
40) [65, 1151, 306484] [1] 1 [65, 1151, 306484] 300 C300
41) [65, 1262, 313921] [1] 1 [65, 1262, 313921] 300 C10 x C30
42) [65, 1691, 707704] [1] 1 [65, 1691, 707704] 300 C300