An Igusa CM invariant is specified by a sequence of three polynomials
[ H1(x), G2(x)/N2, G3(x)/N3],
such that
H1(x), G2(x), and G3(x) are in Z[x],
H1(i1) = 0, |
i2 = G2(i1)/N1N2, |
i3 = G3(i1)/N1N3, |
where N1 = H1'(i1),
and N2 and N3 are integers, and
i1 = I4I6/I10, |
i2 = I23I4/I10, |
i3 = I22I6/I10,
|
in terms of the Igusa-Clebsch invariants
[
I2,
I4,
I6,
I10
].
[1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] | [10] | [11] | [12] | [13] | [14] | [15] | [16] | [17] | [18] | [19] | [20] | [21] | [22] | [23] | [24] |
[49] | [50] | [51] | [52] | [53] | [54] | [55] | [56] | [57] | [58] | [59] | [60] | [61] | [62] | [63] | [64] | [65] | [66] | [67] | [68] | [69] | [70] | [71] | [72] |
[337] | [338] | [339] | [340] | [341] | [342] | [343] | [344] | [345] | [346] | [347] | [348] | [349] | [350] | [351] | [352] | [353] | [354] | [355] | [356] | [357] | [358] | [359] | [360] |
Degree 360 Igusa CM invariants of cyclic (C4) fields: 0