An Igusa CM invariant is specified by a sequence of three polynomials
[ H1(x), G2(x)/N2, G3(x)/N3],
such that
H1(x), G2(x), and G3(x) are in Z[x],
H1(i1) = 0, |
i2 = G2(i1)/N1N2, |
i3 = G3(i1)/N1N3, |
where N1 = H1'(i1),
and N2 and N3 are integers, and
i1 = I4I6/I10, |
i2 = I23I4/I10, |
i3 = I22I6/I10,
|
in terms of the Igusa-Clebsch invariants
[
I2,
I4,
I6,
I10
].
[1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] | [10] | [11] | [12] | [13] | [14] | [15] | [16] | [17] | [18] | [19] | [20] | [21] | [22] | [23] | [24] |
[49] | [50] | [51] | [52] | [53] | [54] | [55] | [56] | [57] | [58] | [59] | [60] | [61] | [62] | [63] | [64] | [65] | [66] | [67] | [68] | [69] | [70] | [71] | [72] |
[529] | [530] | [531] | [532] | [533] | [534] | [535] | [536] | [537] | [538] | [539] | [540] | [541] | [542] | [543] | [544] | [545] | [546] | [547] | [548] | [549] | [550] | [551] | [552] |
Degree 544 Igusa CM invariants of cyclic (C4) fields: 0