Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

### Class group C1 non-normal (D4) quartic CM field invariants: 37 fields

 K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants 1) [5, 34, 269] C1 ■ 35) [269, 17, 5] C1 ■ 2) [5, 21, 109] C1 ■ 29) [109, 17, 45] C1 ■ 3) [5, 41, 389] C1 ■ 37) [389, 37, 245] C1 ■ 4) [5, 17, 61] C1 ■ 24) [61, 9, 5] C1 ■ 5) [5, 13, 41] C1 ■ 22) [41, 11, 20] C1 ■ 6) [5, 26, 149] C1 ■ 31) [149, 13, 5] C1 ■ 7) [8, 18, 73] C1 ■ 25) [73, 9, 2] C1 ■ 8) [8, 22, 89] C1 ■ 27) [89, 11, 8] C1 ■ 9) [8, 38, 233] C1 ■ 34) [233, 19, 32] C1 ■ 10) [8, 10, 17] C1 ■ 16) [17, 5, 2] C1 ■ 11) [8, 34, 281] C1 ■ 36) [281, 17, 2] C1 ■ 12) [13, 18, 29] C1 ■ 21) [29, 9, 13] C1 ■ 13) [13, 9, 17] C1 ■ 17) [17, 15, 52] C1 ■ 14) [13, 41, 157] C1 ■ 32) [157, 25, 117] C1 ■ 15) [13, 29, 181] C1 ■ 33) [181, 41, 13] C1 ■ 16) [17, 5, 2] C1 ■ 10) [8, 10, 17] C1 ■ 17) [17, 15, 52] C1 ■ 13) [13, 9, 17] C1 ■ 18) [17, 46, 257] C1 ■ ---) [257, 23, 68] C3 ■ 19) [17, 47, 548] C1 ■ 30) [137, 35, 272] C1 ■ 20) [29, 26, 53] C1 ■ 23) [53, 13, 29] C1 ■ 21) [29, 9, 13] C1 ■ 12) [13, 18, 29] C1 ■ 22) [41, 11, 20] C1 ■ 5) [5, 13, 41] C1 ■ 23) [53, 13, 29] C1 ■ 20) [29, 26, 53] C1 ■ 24) [61, 9, 5] C1 ■ 4) [5, 17, 61] C1 ■ 25) [73, 9, 2] C1 ■ 7) [8, 18, 73] C1 ■ 26) [73, 47, 388] C1 ■ 28) [97, 94, 657] C1 ■ 27) [89, 11, 8] C1 ■ 8) [8, 22, 89] C1 ■ 28) [97, 94, 657] C1 ■ 26) [73, 47, 388] C1 ■ 29) [109, 17, 45] C1 ■ 2) [5, 21, 109] C1 ■ 30) [137, 35, 272] C1 ■ 19) [17, 47, 548] C1 ■ 31) [149, 13, 5] C1 ■ 6) [5, 26, 149] C1 ■ 32) [157, 25, 117] C1 ■ 14) [13, 41, 157] C1 ■ 33) [181, 41, 13] C1 ■ 15) [13, 29, 181] C1 ■ 34) [233, 19, 32] C1 ■ 9) [8, 38, 233] C1 ■ 35) [269, 17, 5] C1 ■ 1) [5, 34, 269] C1 ■ 36) [281, 17, 2] C1 ■ 11) [8, 34, 281] C1 ■ 37) [389, 37, 245] C1 ■ 3) [5, 41, 389] C1 ■