Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C1015 non-normal (D4) quartic CM field invariants: 96 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [17, 4094, 4006337] C1015 90) [4006337, 2047, 45968] C1015
2) [17, 2206, 1059937] C1015 82) [1059937, 1103, 39168] C1015
3) [17, 4126, 2998241] C1015 89) [2998241, 2063, 314432] C1015
4) [61, 2358, 1292441] C1015 83) [1292441, 1179, 24400] C1015
5) [97, 2606, 803857] C1015 ---) [803857, 1303, 223488] C9135
6) [109, 3006, 1414913] C1015 85) [1414913, 1503, 211024] C1015
7) [109, 1453, 527557] C1015 80) [527557, 2906, 981] C1015
8) [137, 2062, 186161] C1015 76) [186161, 1031, 219200] C1015
9) [241, 534, 67433] C1015 72) [67433, 267, 964] C1015
10) [293, 2990, 1934993] C1015 86) [1934993, 1495, 75008] C1015
11) [389, 1437, 455461] C1015 79) [455461, 2874, 243125] C1015
12) [577, 1466, 17989] C1015 ---) [17989, 733, 129825] C1305
13) [677, 1593, 630181] C1015 ---) [630181, 3186, 16925] C19285
14) [1877, 1001, 246277] C1015 ---) [246277, 2002, 16893] C7 x C1015
15) [2081, 6079, 1871300] C1015 ---) [18713, 6163, 1631504] C203
16) [2129, 1055, 252176] C1015 63) [15761, 2110, 104321] C1015
17) [2281, 4863, 1189952] C1015 69) [18593, 6139, 9124] C1015
18) [2437, 685, 67957] C1015 73) [67957, 1370, 197397] C1015
19) [2633, 4006, 1947737] C1015 65) [16097, 2003, 516068] C1015
20) [2797, 541, 66877] C1015 71) [66877, 1082, 25173] C1015
21) [2969, 1350, 408121] C1015 42) [8329, 675, 11876] C1015
22) [3169, 4079, 812304] C1015 39) [5641, 2263, 1267600] C1015
23) [3181, 1001, 20673] C1015 ---) [2297, 2002, 919309] C203
24) [3209, 3135, 203536] C1015 56) [12721, 6270, 9014081] C1015
25) [3329, 751, 73588] C1015 68) [18397, 1502, 269649] C1015
26) [3373, 806, 108441] C1015 52) [12049, 403, 13492] C1015
27) [3701, 3805, 3130049] C1015 ---) [18521, 7610, 1957829] C3045
28) [3761, 4323, 451300] C1015 31) [4513, 2583, 962816] C1015
29) [4021, 3574, 2936025] C1015 ---) [13049, 1787, 64336] C7 x C1015
30) [4289, 5831, 5016400] C1015 55) [12541, 5265, 4289] C1015
31) [4513, 2583, 962816] C1015 28) [3761, 4323, 451300] C1015
32) [4561, 4823, 5102676] C1015 62) [15749, 9646, 2850625] C1015
33) [4673, 2643, 1717156] C1015 ---) [8761, 5286, 116825] C27405
34) [4801, 3071, 1050688] C1015 66) [16417, 6142, 5228289] C1015
35) [4909, 4209, 2365913] C1015 70) [19553, 8418, 8252029] C1015
36) [5237, 3029, 867937] C1015 67) [17713, 6058, 5703093] C1015
37) [5381, 6961, 11520625] C1015 ---) [18433, 8011, 3099456] C5 x C1015
38) [5573, 5030, 3115177] C1015 ---) [18433, 2515, 802512] C5 x C1015
39) [5641, 2263, 1267600] C1015 22) [3169, 4079, 812304] C1015
40) [5689, 5939, 8406900] C1015 45) [9341, 4545, 5689] C1015
41) [7229, 853, 136721] C1015 ---) [809, 1706, 180725] C203
42) [8329, 675, 11876] C1015 21) [2969, 1350, 408121] C1015
43) [9029, 2581, 254609] C1015 ---) [881, 1555, 577856] C145
44) [9049, 315, 22544] C1015 ---) [1409, 630, 9049] C145
45) [9341, 4545, 5689] C1015 40) [5689, 5939, 8406900] C1015
46) [9829, 3190, 27801] C1015 ---) [3089, 1595, 629056] C203
47) [10357, 5029, 3834441] C1015 ---) [2521, 2687, 165712] C145
48) [10357, 6733, 393741] C1015 ---) [4861, 3997, 2330325] C145
49) [10909, 661, 41049] C1015 ---) [4561, 1322, 272725] C203
50) [10909, 289, 18153] C1015 ---) [2017, 578, 10909] C203
51) [11621, 570, 34741] C1015 ---) [709, 285, 11621] C145
52) [12049, 403, 13492] C1015 26) [3373, 806, 108441] C1015
53) [12497, 8347, 5792768] C1015 ---) [5657, 5015, 6048548] C145
54) [12497, 4703, 4826596] C1015 ---) [2281, 3231, 49988] C145
55) [12541, 5265, 4289] C1015 30) [4289, 5831, 5016400] C1015
56) [12721, 6270, 9014081] C1015 24) [3209, 3135, 203536] C1015
57) [13229, 1057, 11425] C1015 ---) [457, 2114, 1071549] C203
58) [13229, 365, 3541] C1015 ---) [3541, 730, 119061] C203
59) [14281, 1367, 35172] C1015 ---) [977, 2734, 1728001] C203
60) [14281, 5707, 5911056] C1015 ---) [4561, 8219, 5712400] C203
61) [15121, 994, 186525] C1015 ---) [829, 497, 15121] C203
62) [15749, 9646, 2850625] C1015 32) [4561, 4823, 5102676] C1015
63) [15761, 2110, 104321] C1015 16) [2129, 1055, 252176] C1015
64) [15889, 4947, 680192] C1015 ---) [2657, 4267, 4067584] C203
65) [16097, 2003, 516068] C1015 19) [2633, 4006, 1947737] C1015
66) [16417, 6142, 5228289] C1015 34) [4801, 3071, 1050688] C1015
67) [17713, 6058, 5703093] C1015 36) [5237, 3029, 867937] C1015
68) [18397, 1502, 269649] C1015 25) [3329, 751, 73588] C1015
69) [18593, 6139, 9124] C1015 17) [2281, 4863, 1189952] C1015
70) [19553, 8418, 8252029] C1015 35) [4909, 4209, 2365913] C1015
71) [66877, 1082, 25173] C1015 20) [2797, 541, 66877] C1015
72) [67433, 267, 964] C1015 9) [241, 534, 67433] C1015
73) [67957, 1370, 197397] C1015 18) [2437, 685, 67957] C1015
74) [68449, 1231, 361728] C1015 ---) [157, 2462, 68449] C145
75) [113453, 1394, 31997] C1015 ---) [653, 697, 113453] C203
76) [186161, 1031, 219200] C1015 8) [137, 2062, 186161] C1015
77) [355321, 611, 4500] C1015 ---) [5, 1222, 355321] C145
78) [358601, 699, 32500] C1015 ---) [13, 1398, 358601] C203
79) [455461, 2874, 243125] C1015 11) [389, 1437, 455461] C1015
80) [527557, 2906, 981] C1015 7) [109, 1453, 527557] C1015
81) [587281, 837, 28322] C1015 ---) [8, 1674, 587281] C203
82) [1059937, 1103, 39168] C1015 2) [17, 2206, 1059937] C1015
83) [1292441, 1179, 24400] C1015 4) [61, 2358, 1292441] C1015
84) [1357753, 1771, 444672] C1015 ---) [193, 3542, 1357753] C203
85) [1414913, 1503, 211024] C1015 6) [109, 3006, 1414913] C1015
86) [1934993, 1495, 75008] C1015 10) [293, 2990, 1934993] C1015
87) [1951993, 1761, 287282] C1015 ---) [8, 3522, 1951993] C203
88) [2341421, 2129, 547805] C1015 ---) [5, 3077, 2341421] C145
89) [2998241, 2063, 314432] C1015 3) [17, 4126, 2998241] C1015
90) [4006337, 2047, 45968] C1015 1) [17, 4094, 4006337] C1015
91) [4161109, 3117, 1388645] C1015 ---) [5, 4081, 4161109] C203
92) [4472137, 2115, 272] C1015 ---) [17, 4230, 4472137] C203
93) [5116049, 2263, 1280] C1015 ---) [5, 4526, 5116049] C203
94) [5673929, 2723, 435200] C1015 ---) [17, 5446, 5673929] C203
95) [7920629, 4253, 2541845] C1015 ---) [5, 5629, 7920629] C203
96) [8575901, 4409, 2715845] C1015 ---) [5, 5857, 8575901] C203