Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C2 x C14 x C14 non-normal (D4) quartic CM field invariants: 99 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 6390, 9859545] C2 x C14 x C14 ---) [1095505, 3195, 87120] C2 x C14 x C112
2) [12, 2238, 1244661] C2 x C14 x C14 ---) [1244661, 1119, 1875] C2 x C14 x C112
3) [17, 974, 236557] C2 x C14 x C14 ---) [236557, 487, 153] C2 x C14 x C28
4) [21, 495, 60369] C2 x C14 x C14 87) [60369, 990, 3549] C2 x C14 x C14
5) [24, 532, 70702] C2 x C14 x C14 ---) [282808, 1064, 216] C2 x C28 x C84
6) [28, 504, 59129] C2 x C14 x C14 ---) [59129, 1008, 17500] C14 x C28
7) [28, 5670, 7549353] C2 x C14 x C14 ---) [838817, 2835, 121968] C14 x C28
8) [29, 2742, 1374345] C2 x C14 x C14 ---) [152705, 1371, 126324] C2 x C14 x C28
9) [29, 4449, 837585] C2 x C14 x C14 ---) [93065, 4755, 417600] C2 x C14 x C28
10) [29, 855, 30325] C2 x C14 x C14 ---) [1213, 515, 58725] C14 x C28
11) [33, 1220, 139252] C2 x C14 x C14 84) [34813, 610, 58212] C2 x C14 x C14
12) [40, 5654, 4098169] C2 x C14 x C14 ---) [4098169, 2827, 973440] C14 x C14
13) [41, 724, 130388] C2 x C14 x C14 ---) [32597, 362, 164] C2 x C14 x C56
14) [44, 470, 48350] C2 x C14 x C14 ---) [7736, 940, 27500] C14 x C14 x C14
15) [53, 660, 101268] C2 x C14 x C14 ---) [2813, 330, 1908] C2 x C2 x C14 x C14
16) [56, 1036, 214508] C2 x C14 x C14 ---) [214508, 518, 13454] C2 x C28 x C28
17) [56, 5044, 1779908] C2 x C14 x C14 73) [2633, 2522, 1145144] C2 x C14 x C14
18) [56, 944, 137608] C2 x C14 x C14 ---) [137608, 472, 21294] C2 x C14 x C112
19) [57, 5414, 6802537] C2 x C14 x C14 ---) [6802537, 2707, 131328] C2 x C2 x C14 x C28
20) [57, 3654, 3159177] C2 x C14 x C14 ---) [64473, 1827, 44688] C14 x C28
21) [61, 6414, 9406449] C2 x C14 x C14 ---) [116129, 3207, 219600] C28 x C28
22) [88, 882, 190169] C2 x C14 x C14 ---) [3881, 441, 1078] C14 x C28
23) [88, 1822, 774921] C2 x C14 x C14 ---) [774921, 911, 13750] C7 x C28 x C56
24) [88, 1290, 229817] C2 x C14 x C14 ---) [229817, 645, 46552] C14 x C28
25) [93, 5901, 5330457] C2 x C14 x C14 ---) [592273, 5407, 53568] C28 x C280
26) [133, 1566, 306657] C2 x C14 x C14 ---) [34073, 783, 76608] C28 x C28
27) [141, 1746, 693885] C2 x C14 x C14 ---) [693885, 873, 17061] C2 x C28 x C308
28) [152, 1356, 454212] C2 x C14 x C14 ---) [12617, 678, 1368] C2 x C14 x C28
29) [204, 694, 91033] C2 x C14 x C14 ---) [91033, 347, 7344] C14 x C14
30) [217, 2758, 1887753] C2 x C14 x C14 ---) [1887753, 1379, 3472] C2 x C28 x C28
31) [217, 520, 25068] C2 x C14 x C14 ---) [25068, 260, 10633] C2 x C14 x C56
32) [233, 283, 12974] C2 x C14 x C14 ---) [51896, 566, 28193] C2 x C14 x C28
33) [344, 8838, 19478025] C2 x C14 x C14 ---) [86569, 4419, 12384] C2 x C14 x C28
34) [373, 4966, 2130921] C2 x C14 x C14 57) [1401, 2483, 1008592] C2 x C14 x C14
35) [373, 797, 151249] C2 x C14 x C14 ---) [151249, 1594, 30213] C2 x C28 x C28
36) [373, 1530, 547925] C2 x C14 x C14 ---) [21917, 765, 9325] C2 x C14 x C28
37) [508, 2886, 1789641] C2 x C14 x C14 ---) [198849, 1443, 73152] C2 x C28 x C28
38) [577, 226, 3537] C2 x C14 x C14 ---) [393, 113, 2308] C2 x C28
39) [577, 276, 13851] C2 x C14 x C14 ---) [76, 552, 20772] C2 x C28
40) [577, 382, 8208] C2 x C14 x C14 ---) [57, 254, 9232] C2 x C28
41) [577, 141, 3672] C2 x C14 x C14 ---) [408, 282, 5193] C2 x C2 x C28
42) [577, 255, 4572] C2 x C14 x C14 ---) [508, 510, 46737] C2 x C28
43) [577, 178, 7344] C2 x C14 x C14 ---) [204, 332, 577] C2 x C2 x C28
44) [577, 775, 11532] C2 x C14 x C14 ---) [12, 1550, 554497] C2 x C28
45) [577, 757, 101574] C2 x C14 x C14 ---) [5016, 1514, 166753] C2 x C4 x C28
46) [577, 235, 10200] C2 x C14 x C14 ---) [408, 470, 14425] C2 x C2 x C2 x C14
47) [577, 741, 32112] C2 x C14 x C14 ---) [892, 1482, 420633] C2 x C84
48) [597, 705, 120525] C2 x C14 x C14 74) [4821, 1410, 14925] C2 x C14 x C14
49) [617, 586, 55616] C2 x C14 x C14 ---) [869, 1172, 120932] C14 x C28
50) [1009, 285, 18036] C2 x C14 x C14 ---) [501, 570, 9081] C2 x C28
51) [1009, 1213, 22512] C2 x C14 x C14 ---) [5628, 2426, 1381321] C2 x C2 x C2 x C28
52) [1009, 313, 24240] C2 x C14 x C14 ---) [6060, 626, 1009] C2 x C4 x C28
53) [1009, 447, 29520] C2 x C14 x C14 ---) [205, 894, 81729] C4 x C28
54) [1009, 250, 14616] C2 x C14 x C14 ---) [1624, 500, 4036] C2 x C2 x C28
55) [1068, 208, 9748] C2 x C14 x C14 ---) [2437, 104, 267] C14 x C14
56) [1201, 369, 31338] C2 x C14 x C14 ---) [13928, 738, 10809] C2 x C14 x C84
57) [1401, 2483, 1008592] C2 x C14 x C14 34) [373, 4966, 2130921] C2 x C14 x C14
58) [1468, 672, 109593] C2 x C14 x C14 ---) [1353, 1344, 13212] C2 x C14 x C28
59) [1549, 1038, 213597] C2 x C14 x C14 ---) [293, 519, 13941] C14 x C28
60) [1553, 1674, 686592] C2 x C14 x C14 ---) [1192, 3348, 55908] C2 x C14 x C28
61) [1761, 270, 2376] C2 x C14 x C14 ---) [264, 540, 63396] C2 x C2 x C28
62) [1761, 221, 1204] C2 x C14 x C14 ---) [301, 442, 44025] C2 x C2 x C14
63) [1761, 235, 2800] C2 x C14 x C14 ---) [28, 470, 44025] C2 x C28
64) [1761, 207, 6750] C2 x C14 x C14 ---) [120, 414, 15849] C2 x C2 x C28
65) [1761, 237, 10080] C2 x C14 x C14 ---) [280, 474, 15849] C2 x C2 x C28
66) [1801, 904, 197100] C2 x C14 x C14 ---) [876, 452, 1801] C2 x C14 x C56
67) [1837, 376, 33507] C2 x C14 x C14 ---) [14892, 752, 7348] C2 x C2 x C14 x C28
68) [2049, 1779, 704640] C2 x C14 x C14 ---) [44040, 3558, 346281] C2 x C2 x C14 x C84
69) [2285, 719, 709] C2 x C14 x C14 ---) [709, 1167, 276485] C14 x C14
70) [2428, 364, 3381] C2 x C14 x C14 ---) [69, 728, 118972] C14 x C28
71) [2461, 2191, 1169973] C2 x C14 x C14 ---) [2653, 1567, 199341] C14 x C28
72) [2620, 6214, 8982729] C2 x C14 x C14 ---) [20369, 3107, 167680] C14 x C154
73) [2633, 2522, 1145144] C2 x C14 x C14 17) [56, 5044, 1779908] C2 x C14 x C14
74) [4821, 1410, 14925] C2 x C14 x C14 48) [597, 705, 120525] C2 x C14 x C14
75) [5101, 432, 747] C2 x C14 x C14 ---) [332, 864, 183636] C14 x C28
76) [6168, 476, 1132] C2 x C14 x C14 ---) [1132, 238, 13878] C14 x C14
77) [9521, 289, 18500] C2 x C14 x C14 ---) [185, 578, 9521] C2 x C14 x C28
78) [10117, 321, 2997] C2 x C14 x C14 ---) [37, 642, 91053] C2 x C2 x C14
79) [10637, 510, 22477] C2 x C14 x C14 ---) [133, 255, 10637] C14 x C28
80) [12241, 721, 126900] C2 x C14 x C14 ---) [141, 1391, 306025] C14 x C28
81) [17569, 685, 7500] C2 x C14 x C14 ---) [12, 1370, 439225] C2 x C28
82) [18316, 272, 180] C2 x C14 x C14 ---) [5, 136, 4579] C2 x C14
83) [18741, 171, 2625] C2 x C14 x C14 ---) [105, 342, 18741] C2 x C14 x C28
84) [34813, 610, 58212] C2 x C14 x C14 11) [33, 1220, 139252] C2 x C14 x C14
85) [38137, 1200, 16767] C2 x C14 x C14 ---) [92, 2400, 1372932] C14 x C28
86) [52933, 2778, 23733] C2 x C14 x C14 ---) [293, 1389, 476397] C14 x C28
87) [60369, 990, 3549] C2 x C14 x C14 4) [21, 495, 60369] C2 x C14 x C14
88) [69781, 1593, 477405] C2 x C14 x C14 ---) [5, 1689, 628029] C2 x C28
89) [76684, 556, 600] C2 x C14 x C14 ---) [24, 278, 19171] C14 x C14
90) [87649, 933, 20412] C2 x C14 x C14 ---) [28, 1866, 788841] C14 x C28
91) [240316, 1136, 82308] C2 x C14 x C14 ---) [57, 568, 60079] C14 x C14
92) [426829, 661, 2523] C2 x C14 x C14 ---) [12, 1322, 426829] C14 x C14
93) [448924, 774, 37538] C2 x C14 x C14 ---) [8, 774, 112231] C14 x C14
94) [494201, 715, 4256] C2 x C14 x C14 ---) [1064, 1430, 494201] C2 x C14 x C28
95) [577436, 778, 6962] C2 x C14 x C14 ---) [8, 778, 144359] C14 x C14
96) [698921, 839, 1250] C2 x C14 x C14 ---) [8, 1678, 698921] C14 x C14
97) [732952, 862, 2523] C2 x C14 x C14 ---) [12, 1550, 183238] C14 x C14
98) [945337, 997, 12168] C2 x C14 x C14 ---) [8, 1994, 945337] C14 x C14
99) [8006153, 3011, 264992] C2 x C14 x C14 ---) [8, 6022, 8006153] C14 x C14