Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C2 x C14 x C28 non-normal (D4) quartic CM field invariants: 110 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [21, 637, 101311] C2 x C14 x C28 ---) [405244, 1274, 525] C4 x C28 x C28
2) [24, 5070, 6420081] C2 x C14 x C28 ---) [6420081, 2535, 1536] C2 x C2 x C2 x C14 x C168
3) [37, 698, 120876] C2 x C14 x C28 ---) [120876, 1396, 3700] C2 x C28 x C56
4) [60, 1068, 198516] C2 x C14 x C28 ---) [49629, 534, 21660] C28 x C28
5) [77, 2198, 1188089] C2 x C14 x C28 ---) [1188089, 1099, 4928] C28 x C56
6) [105, 342, 18741] C2 x C14 x C28 ---) [18741, 171, 2625] C2 x C14 x C14
7) [168, 478, 43513] C2 x C14 x C28 91) [43513, 239, 3402] C2 x C14 x C28
8) [185, 578, 9521] C2 x C14 x C28 ---) [9521, 289, 18500] C2 x C14 x C14
9) [264, 3494, 1362409] C2 x C14 x C28 ---) [1362409, 1747, 422400] C14 x C28
10) [264, 890, 197761] C2 x C14 x C28 ---) [197761, 445, 66] C28 x C28
11) [284, 932, 182792] C2 x C14 x C28 ---) [182792, 466, 8591] C2 x C28 x C56
12) [385, 1027, 247416] C2 x C14 x C28 44) [1464, 2054, 65065] C2 x C14 x C28
13) [488, 1174, 313337] C2 x C14 x C28 ---) [313337, 587, 7808] C14 x C28
14) [577, 244, 14307] C2 x C14 x C28 ---) [57228, 488, 2308] C2 x C2 x C2 x C56
15) [577, 158, 3933] C2 x C14 x C28 ---) [437, 79, 577] C2 x C56
16) [577, 231, 1656] C2 x C14 x C28 ---) [184, 462, 46737] C4 x C28
17) [577, 561, 36992] C2 x C14 x C28 ---) [8, 1122, 166753] C2 x C2 x C28
18) [577, 988, 35739] C2 x C14 x C28 ---) [44, 1976, 833188] C2 x C56
19) [577, 344, 1311] C2 x C14 x C28 ---) [5244, 688, 113092] C2 x C4 x C56
20) [577, 256, 14076] C2 x C14 x C28 ---) [1564, 128, 577] C2 x C4 x C28
21) [577, 411, 9774] C2 x C14 x C28 ---) [4344, 822, 129825] C2 x C4 x C84
22) [577, 1506, 47709] C2 x C14 x C28 ---) [589, 753, 129825] C2 x C2 x C28
23) [577, 258, 11448] C2 x C14 x C28 ---) [1272, 516, 20772] C2 x C2 x C56
24) [577, 213, 10044] C2 x C14 x C28 ---) [124, 426, 5193] C2 x C56
25) [593, 331, 27242] C2 x C14 x C28 ---) [108968, 662, 593] C2 x C2 x C14 x C56
26) [696, 494, 49873] C2 x C14 x C28 ---) [49873, 247, 2784] C28 x C168
27) [712, 650, 99217] C2 x C14 x C28 ---) [99217, 325, 1602] C14 x C28
28) [1009, 627, 67760] C2 x C14 x C28 ---) [140, 1254, 122089] C2 x C2 x C2 x C28
29) [1009, 379, 23550] C2 x C14 x C28 ---) [3768, 758, 49441] C2 x C2 x C56
30) [1009, 315, 22536] C2 x C14 x C28 ---) [2504, 630, 9081] C2 x C4 x C56
31) [1009, 904, 82215] C2 x C14 x C28 ---) [4060, 1808, 488356] C2 x C4 x C56
32) [1009, 1381, 10380] C2 x C14 x C28 ---) [10380, 2762, 1865641] C2 x C4 x C56
33) [1009, 909, 204300] C2 x C14 x C28 ---) [908, 1818, 9081] C2 x C56
34) [1009, 733, 103800] C2 x C14 x C28 ---) [4152, 1466, 122089] C2 x C2 x C56
35) [1032, 716, 91012] C2 x C14 x C28 80) [22753, 358, 9288] C2 x C14 x C28
36) [1064, 1430, 494201] C2 x C14 x C28 ---) [494201, 715, 4256] C2 x C14 x C14
37) [1157, 791, 3407] C2 x C14 x C28 ---) [13628, 1582, 612053] C14 x C28
38) [1192, 3348, 55908] C2 x C14 x C28 ---) [1553, 1674, 686592] C2 x C14 x C14
39) [1276, 212, 6132] C2 x C14 x C28 ---) [1533, 106, 1276] C28 x C28
40) [1336, 916, 204420] C2 x C14 x C28 ---) [51105, 458, 1336] C28 x C56
41) [1353, 1344, 13212] C2 x C14 x C28 ---) [1468, 672, 109593] C2 x C14 x C14
42) [1385, 879, 190044] C2 x C14 x C28 ---) [21116, 1758, 12465] C14 x C28
43) [1417, 1357, 357984] C2 x C14 x C28 ---) [9944, 2714, 409513] C2 x C14 x C56
44) [1464, 2054, 65065] C2 x C14 x C28 12) [385, 1027, 247416] C2 x C14 x C28
45) [1484, 2174, 18113] C2 x C14 x C28 ---) [18113, 1087, 290864] C14 x C28
46) [1517, 128, 2579] C2 x C14 x C28 ---) [10316, 256, 6068] C14 x C28
47) [1549, 101, 2163] C2 x C14 x C28 ---) [8652, 202, 1549] C4 x C28 x C28
48) [1569, 1559, 180460] C2 x C14 x C28 ---) [180460, 3118, 1708641] C2 x C56 x C56
49) [1601, 243, 11160] C2 x C14 x C28 ---) [1240, 486, 14409] C2 x C4 x C28
50) [1601, 322, 24320] C2 x C14 x C28 ---) [380, 644, 6404] C2 x C2 x C56
51) [1601, 537, 52480] C2 x C14 x C28 ---) [205, 431, 14409] C4 x C56
52) [1720, 870, 168155] C2 x C14 x C28 ---) [3980, 1050, 155230] C28 x C28
53) [1761, 270, 16464] C2 x C14 x C28 ---) [21, 330, 7044] C2 x C2 x C28
54) [1761, 774, 133920] C2 x C14 x C28 ---) [3720, 1548, 63396] C2 x C4 x C56
55) [1761, 521, 32200] C2 x C14 x C28 ---) [1288, 1042, 142641] C2 x C4 x C56
56) [1761, 378, 19872] C2 x C14 x C28 ---) [552, 756, 63396] C2 x C2 x C56
57) [1829, 616, 5243] C2 x C14 x C28 ---) [428, 1232, 358484] C2 x C2 x C14 x C14
58) [2017, 866, 58401] C2 x C14 x C28 ---) [721, 433, 32272] C28 x C28
59) [2029, 649, 43923] C2 x C14 x C28 ---) [12, 1298, 245509] C2 x C2 x C28
60) [2913, 342, 3024] C2 x C14 x C28 ---) [21, 402, 11652] C2 x C2 x C28
61) [2913, 885, 31950] C2 x C14 x C28 ---) [568, 1770, 655425] C2 x C168
62) [4172, 276, 2356] C2 x C14 x C28 ---) [589, 138, 4172] C14 x C28
63) [4229, 345, 3325] C2 x C14 x C28 ---) [133, 690, 105725] C2 x C56
64) [6136, 790, 2625] C2 x C14 x C28 ---) [105, 395, 38350] C2 x C2 x C28
65) [6136, 810, 10625] C2 x C14 x C28 ---) [17, 405, 38350] C2 x C2 x C14
66) [6136, 382, 30345] C2 x C14 x C28 ---) [105, 191, 1534] C2 x C2 x C28
67) [8185, 825, 4410] C2 x C14 x C28 ---) [40, 1650, 662985] C2 x C2 x C28
68) [8185, 852, 107811] C2 x C14 x C28 ---) [44, 1704, 294660] C2 x C28
69) [8376, 96, 210] C2 x C14 x C28 ---) [840, 192, 8376] C2 x C28 x C28
70) [9004, 172, 5145] C2 x C14 x C28 ---) [105, 344, 9004] C4 x C56
71) [9049, 688, 82140] C2 x C14 x C28 ---) [60, 344, 9049] C2 x C4 x C28
72) [9289, 327, 5832] C2 x C14 x C28 ---) [8, 654, 83601] C2 x C56
73) [9289, 291, 270] C2 x C14 x C28 ---) [120, 582, 83601] C2 x C2 x C56
74) [10396, 354, 7938] C2 x C14 x C28 ---) [8, 354, 23391] C2 x C2 x C14
75) [12617, 678, 1368] C2 x C14 x C28 ---) [152, 1356, 454212] C2 x C14 x C14
76) [17512, 748, 69828] C2 x C14 x C28 ---) [33, 374, 17512] C2 x C2 x C14
77) [17569, 592, 17340] C2 x C14 x C28 ---) [60, 296, 17569] C2 x C4 x C28
78) [20221, 145, 201] C2 x C14 x C28 ---) [201, 290, 20221] C2 x C28
79) [21917, 765, 9325] C2 x C14 x C28 ---) [373, 1530, 547925] C2 x C14 x C14
80) [22753, 358, 9288] C2 x C14 x C28 35) [1032, 716, 91012] C2 x C14 x C28
81) [22921, 1371, 5760] C2 x C14 x C28 ---) [40, 2742, 1856601] C4 x C56
82) [25081, 477, 450] C2 x C14 x C28 ---) [8, 954, 225729] C2 x C56
83) [26713, 301, 15972] C2 x C14 x C28 ---) [33, 602, 26713] C2 x C56
84) [27173, 167, 179] C2 x C14 x C28 ---) [716, 334, 27173] C14 x C28
85) [27257, 575, 21328] C2 x C14 x C28 ---) [1333, 1150, 245313] C14 x C28
86) [27937, 169, 156] C2 x C14 x C28 ---) [156, 338, 27937] C4 x C28
87) [28609, 424, 16335] C2 x C14 x C28 ---) [60, 848, 114436] C4 x C28
88) [31369, 451, 43008] C2 x C14 x C28 ---) [168, 902, 31369] C4 x C28
89) [32817, 402, 7584] C2 x C14 x C28 ---) [1896, 804, 131268] C2 x C28 x C28
90) [40249, 1242, 23400] C2 x C14 x C28 ---) [104, 2484, 1448964] C4 x C56
91) [43513, 239, 3402] C2 x C14 x C28 7) [168, 478, 43513] C2 x C14 x C28
92) [51896, 566, 28193] C2 x C14 x C28 ---) [233, 283, 12974] C2 x C14 x C14
93) [63497, 253, 128] C2 x C14 x C28 ---) [8, 506, 63497] C2 x C2 x C14
94) [86569, 4419, 12384] C2 x C14 x C28 ---) [344, 8838, 19478025] C2 x C14 x C14
95) [93065, 4755, 417600] C2 x C14 x C28 ---) [29, 4449, 837585] C2 x C14 x C14
96) [96409, 736, 39015] C2 x C14 x C28 ---) [60, 1472, 385636] C4 x C28
97) [106396, 872, 83700] C2 x C14 x C28 ---) [93, 436, 26599] C14 x C28
98) [116629, 343, 255] C2 x C14 x C28 ---) [1020, 686, 116629] C2 x C2 x C14 x C56
99) [152705, 1371, 126324] C2 x C14 x C28 ---) [29, 2742, 1374345] C2 x C14 x C14
100) [153017, 405, 2752] C2 x C14 x C28 ---) [172, 810, 153017] C14 x C28
101) [195937, 445, 522] C2 x C14 x C28 ---) [232, 890, 195937] C2 x C2 x C14 x C14
102) [221128, 472, 414] C2 x C14 x C28 ---) [184, 944, 221128] C14 x C28
103) [236557, 487, 153] C2 x C14 x C28 ---) [17, 974, 236557] C2 x C14 x C14
104) [237009, 1467, 4752] C2 x C14 x C28 ---) [33, 2934, 2133081] C2 x C28
105) [243409, 1691, 167200] C2 x C14 x C28 ---) [1672, 3382, 2190681] C28 x C28
106) [450145, 679, 2724] C2 x C14 x C28 ---) [681, 1358, 450145] C14 x C14
107) [516997, 2962, 125373] C2 x C14 x C28 ---) [237, 1481, 516997] C14 x C28
108) [1280617, 1139, 4176] C2 x C14 x C28 ---) [29, 2278, 1280617] C14 x C28
109) [1590673, 1559, 209952] C2 x C14 x C28 ---) [8, 3118, 1590673] C14 x C28
110) [1677269, 1613, 231125] C2 x C14 x C28 ---) [5, 2689, 1677269] C2 x C28