A quartic CM field field K is represented by invariants [D,A,B], where
K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real
quadratic subfield (hence A2-4B = m2D for some m).
Class number:
[Non-normal]
[Cyclic]
Class group C3 non-normal (D4) quartic CM field invariants: 134 fields
K |
Quartic invariants |
Cl(OK) |
Igusa invariants |
Kr |
Reflex invariants |
Cl(OKr) |
Igusa invariants |
1) |
[5, 101, 2549] |
C3 |
■ |
132) |
[2549, 77, 845] |
C3 |
■ |
2) |
[5, 37, 281] |
C3 |
■ |
84) |
[281, 19, 20] |
C3 |
■ |
3) |
[5, 101, 2269] |
C3 |
■ |
129) |
[2269, 57, 245] |
C3 |
■ |
4) |
[5, 106, 2789] |
C3 |
■ |
133) |
[2789, 53, 5] |
C3 |
■ |
5) |
[5, 41, 409] |
C3 |
■ |
93) |
[409, 27, 80] |
C3 |
■ |
6) |
[5, 57, 661] |
C3 |
■ |
101) |
[661, 29, 45] |
C3 |
■ |
7) |
[5, 33, 241] |
C3 |
■ |
81) |
[241, 31, 180] |
C3 |
■ |
8) |
[5, 97, 1901] |
C3 |
■ |
---) |
[1901, 49, 125] |
C3 x C3 |
■ |
9) |
[5, 49, 569] |
C3 |
■ |
97) |
[569, 43, 320] |
C3 |
■ |
10) |
[5, 46, 449] |
C3 |
■ |
95) |
[449, 23, 20] |
C3 |
■ |
11) |
[5, 53, 701] |
C3 |
■ |
103) |
[701, 41, 245] |
C3 |
■ |
12) |
[5, 61, 929] |
C3 |
■ |
109) |
[929, 47, 320] |
C3 |
■ |
13) |
[5, 106, 2309] |
C3 |
■ |
130) |
[2309, 53, 125] |
C3 |
■ |
14) |
[5, 81, 1429] |
C3 |
■ |
---) |
[1429, 77, 1125] |
C15 |
■ |
15) |
[5, 61, 829] |
C3 |
■ |
107) |
[829, 57, 605] |
C3 |
■ |
16) |
[5, 42, 421] |
C3 |
■ |
94) |
[421, 21, 5] |
C3 |
■ |
17) |
[5, 58, 821] |
C3 |
■ |
106) |
[821, 29, 5] |
C3 |
■ |
18) |
[5, 66, 1069] |
C3 |
■ |
113) |
[1069, 33, 5] |
C3 |
■ |
19) |
[5, 73, 1181] |
C3 |
■ |
117) |
[1181, 41, 125] |
C3 |
■ |
20) |
[5, 89, 1949] |
C3 |
■ |
128) |
[1949, 73, 845] |
C3 |
■ |
21) |
[8, 26, 97] |
C3 |
■ |
69) |
[97, 13, 18] |
C3 |
■ |
22) |
[8, 70, 1097] |
C3 |
■ |
114) |
[1097, 35, 32] |
C3 |
■ |
23) |
[8, 86, 1049] |
C3 |
■ |
112) |
[1049, 43, 200] |
C3 |
■ |
24) |
[8, 98, 1433] |
C3 |
■ |
121) |
[1433, 49, 242] |
C3 |
■ |
25) |
[8, 50, 617] |
C3 |
■ |
100) |
[617, 25, 2] |
C3 |
■ |
26) |
[8, 82, 1033] |
C3 |
■ |
111) |
[1033, 41, 162] |
C3 |
■ |
27) |
[8, 118, 2969] |
C3 |
■ |
134) |
[2969, 59, 128] |
C3 |
■ |
28) |
[8, 86, 1721] |
C3 |
■ |
125) |
[1721, 43, 32] |
C3 |
■ |
29) |
[8, 82, 1481] |
C3 |
■ |
123) |
[1481, 41, 50] |
C3 |
■ |
30) |
[8, 70, 937] |
C3 |
■ |
110) |
[937, 35, 72] |
C3 |
■ |
31) |
[8, 70, 1193] |
C3 |
■ |
118) |
[1193, 35, 8] |
C3 |
■ |
32) |
[8, 114, 2857] |
C3 |
■ |
---) |
[2857, 57, 98] |
C3 x C3 |
■ |
33) |
[8, 98, 2393] |
C3 |
■ |
131) |
[2393, 49, 2] |
C3 |
■ |
34) |
[8, 54, 601] |
C3 |
■ |
98) |
[601, 27, 32] |
C3 |
■ |
35) |
[13, 33, 113] |
C3 |
■ |
76) |
[113, 35, 52] |
C3 |
■ |
36) |
[13, 101, 1117] |
C3 |
■ |
115) |
[1117, 73, 1053] |
C3 |
■ |
37) |
[13, 77, 1453] |
C3 |
■ |
122) |
[1453, 125, 637] |
C3 |
■ |
38) |
[13, 53, 673] |
C3 |
■ |
102) |
[673, 83, 208] |
C3 |
■ |
39) |
[13, 42, 389] |
C3 |
■ |
92) |
[389, 21, 13] |
C3 |
■ |
40) |
[13, 33, 269] |
C3 |
■ |
83) |
[269, 61, 325] |
C3 |
■ |
41) |
[13, 98, 1933] |
C3 |
■ |
127) |
[1933, 49, 117] |
C3 |
■ |
42) |
[17, 175, 7652] |
C3 |
■ |
126) |
[1913, 139, 4352] |
C3 |
■ |
43) |
[17, 167, 6628] |
C3 |
■ |
124) |
[1657, 107, 2448] |
C3 |
■ |
44) |
[17, 111, 3076] |
C3 |
■ |
105) |
[769, 87, 1700] |
C3 |
■ |
45) |
[17, 26, 101] |
C3 |
■ |
71) |
[101, 13, 17] |
C3 |
■ |
46) |
[17, 86, 761] |
C3 |
■ |
---) |
[761, 43, 272] |
C3 x C3 |
■ |
47) |
[17, 103, 2308] |
C3 |
■ |
---) |
[577, 55, 612] |
C21 |
■ |
48) |
[17, 78, 1249] |
C3 |
■ |
119) |
[1249, 39, 68] |
C3 |
■ |
49) |
[29, 34, 173] |
C3 |
■ |
78) |
[173, 17, 29] |
C3 |
■ |
50) |
[29, 65, 701] |
C3 |
■ |
104) |
[701, 130, 1421] |
C3 |
■ |
51) |
[29, 89, 349] |
C3 |
■ |
89) |
[349, 57, 725] |
C3 |
■ |
52) |
[37, 137, 613] |
C3 |
■ |
99) |
[613, 113, 1813] |
C3 |
■ |
53) |
[37, 41, 337] |
C3 |
■ |
86) |
[337, 82, 333] |
C3 |
■ |
54) |
[37, 45, 53] |
C3 |
■ |
64) |
[53, 25, 37] |
C3 |
■ |
55) |
[37, 33, 41] |
C3 |
■ |
59) |
[41, 31, 148] |
C3 |
■ |
56) |
[37, 77, 733] |
C3 |
■ |
---) |
[733, 154, 2997] |
C3 x C3 |
■ |
57) |
[37, 202, 10053] |
C3 |
■ |
116) |
[1117, 101, 37] |
C3 |
■ |
58) |
[37, 21, 101] |
C3 |
■ |
72) |
[101, 42, 37] |
C3 |
■ |
59) |
[41, 31, 148] |
C3 |
■ |
55) |
[37, 33, 41] |
C3 |
■ |
60) |
[41, 118, 857] |
C3 |
■ |
108) |
[857, 59, 656] |
C3 |
■ |
61) |
[41, 111, 1348] |
C3 |
■ |
87) |
[337, 79, 1476] |
C3 |
■ |
62) |
[41, 151, 5444] |
C3 |
■ |
120) |
[1361, 211, 2624] |
C3 |
■ |
63) |
[41, 103, 1412] |
C3 |
■ |
90) |
[353, 107, 656] |
C3 |
■ |
64) |
[53, 25, 37] |
C3 |
■ |
54) |
[37, 45, 53] |
C3 |
■ |
65) |
[61, 29, 73] |
C3 |
■ |
66) |
[73, 58, 549] |
C3 |
■ |
66) |
[73, 58, 549] |
C3 |
■ |
65) |
[61, 29, 73] |
C3 |
■ |
67) |
[73, 78, 353] |
C3 |
■ |
91) |
[353, 39, 292] |
C3 |
■ |
68) |
[89, 78, 97] |
C3 |
■ |
70) |
[97, 39, 356] |
C3 |
■ |
69) |
[97, 13, 18] |
C3 |
■ |
21) |
[8, 26, 97] |
C3 |
■ |
70) |
[97, 39, 356] |
C3 |
■ |
68) |
[89, 78, 97] |
C3 |
■ |
71) |
[101, 13, 17] |
C3 |
■ |
45) |
[17, 26, 101] |
C3 |
■ |
72) |
[101, 42, 37] |
C3 |
■ |
58) |
[37, 21, 101] |
C3 |
■ |
73) |
[109, 161, 349] |
C3 |
■ |
88) |
[349, 145, 981] |
C3 |
■ |
74) |
[113, 119, 1252] |
C3 |
■ |
85) |
[313, 171, 7232] |
C3 |
■ |
75) |
[113, 94, 401] |
C3 |
■ |
---) |
[401, 47, 452] |
C15 |
■ |
76) |
[113, 35, 52] |
C3 |
■ |
35) |
[13, 33, 113] |
C3 |
■ |
77) |
[137, 103, 1796] |
C3 |
■ |
96) |
[449, 206, 3425] |
C3 |
■ |
78) |
[173, 17, 29] |
C3 |
■ |
49) |
[29, 34, 173] |
C3 |
■ |
79) |
[193, 131, 3856] |
C3 |
■ |
80) |
[241, 199, 6948] |
C3 |
■ |
80) |
[241, 199, 6948] |
C3 |
■ |
79) |
[193, 131, 3856] |
C3 |
■ |
81) |
[241, 31, 180] |
C3 |
■ |
7) |
[5, 33, 241] |
C3 |
■ |
82) |
[257, 23, 68] |
C3 |
■ |
---) |
[17, 46, 257] |
C1 |
■ |
83) |
[269, 61, 325] |
C3 |
■ |
40) |
[13, 33, 269] |
C3 |
■ |
84) |
[281, 19, 20] |
C3 |
■ |
2) |
[5, 37, 281] |
C3 |
■ |
85) |
[313, 171, 7232] |
C3 |
■ |
74) |
[113, 119, 1252] |
C3 |
■ |
86) |
[337, 82, 333] |
C3 |
■ |
53) |
[37, 41, 337] |
C3 |
■ |
87) |
[337, 79, 1476] |
C3 |
■ |
61) |
[41, 111, 1348] |
C3 |
■ |
88) |
[349, 145, 981] |
C3 |
■ |
73) |
[109, 161, 349] |
C3 |
■ |
89) |
[349, 57, 725] |
C3 |
■ |
51) |
[29, 89, 349] |
C3 |
■ |
90) |
[353, 107, 656] |
C3 |
■ |
63) |
[41, 103, 1412] |
C3 |
■ |
91) |
[353, 39, 292] |
C3 |
■ |
67) |
[73, 78, 353] |
C3 |
■ |
92) |
[389, 21, 13] |
C3 |
■ |
39) |
[13, 42, 389] |
C3 |
■ |
93) |
[409, 27, 80] |
C3 |
■ |
5) |
[5, 41, 409] |
C3 |
■ |
94) |
[421, 21, 5] |
C3 |
■ |
16) |
[5, 42, 421] |
C3 |
■ |
95) |
[449, 23, 20] |
C3 |
■ |
10) |
[5, 46, 449] |
C3 |
■ |
96) |
[449, 206, 3425] |
C3 |
■ |
77) |
[137, 103, 1796] |
C3 |
■ |
97) |
[569, 43, 320] |
C3 |
■ |
9) |
[5, 49, 569] |
C3 |
■ |
98) |
[601, 27, 32] |
C3 |
■ |
34) |
[8, 54, 601] |
C3 |
■ |
99) |
[613, 113, 1813] |
C3 |
■ |
52) |
[37, 137, 613] |
C3 |
■ |
100) |
[617, 25, 2] |
C3 |
■ |
25) |
[8, 50, 617] |
C3 |
■ |
101) |
[661, 29, 45] |
C3 |
■ |
6) |
[5, 57, 661] |
C3 |
■ |
102) |
[673, 83, 208] |
C3 |
■ |
38) |
[13, 53, 673] |
C3 |
■ |
103) |
[701, 41, 245] |
C3 |
■ |
11) |
[5, 53, 701] |
C3 |
■ |
104) |
[701, 130, 1421] |
C3 |
■ |
50) |
[29, 65, 701] |
C3 |
■ |
105) |
[769, 87, 1700] |
C3 |
■ |
44) |
[17, 111, 3076] |
C3 |
■ |
106) |
[821, 29, 5] |
C3 |
■ |
17) |
[5, 58, 821] |
C3 |
■ |
107) |
[829, 57, 605] |
C3 |
■ |
15) |
[5, 61, 829] |
C3 |
■ |
108) |
[857, 59, 656] |
C3 |
■ |
60) |
[41, 118, 857] |
C3 |
■ |
109) |
[929, 47, 320] |
C3 |
■ |
12) |
[5, 61, 929] |
C3 |
■ |
110) |
[937, 35, 72] |
C3 |
■ |
30) |
[8, 70, 937] |
C3 |
■ |
111) |
[1033, 41, 162] |
C3 |
■ |
26) |
[8, 82, 1033] |
C3 |
■ |
112) |
[1049, 43, 200] |
C3 |
■ |
23) |
[8, 86, 1049] |
C3 |
■ |
113) |
[1069, 33, 5] |
C3 |
■ |
18) |
[5, 66, 1069] |
C3 |
■ |
114) |
[1097, 35, 32] |
C3 |
■ |
22) |
[8, 70, 1097] |
C3 |
■ |
115) |
[1117, 73, 1053] |
C3 |
■ |
36) |
[13, 101, 1117] |
C3 |
■ |
116) |
[1117, 101, 37] |
C3 |
■ |
57) |
[37, 202, 10053] |
C3 |
■ |
117) |
[1181, 41, 125] |
C3 |
■ |
19) |
[5, 73, 1181] |
C3 |
■ |
118) |
[1193, 35, 8] |
C3 |
■ |
31) |
[8, 70, 1193] |
C3 |
■ |
119) |
[1249, 39, 68] |
C3 |
■ |
48) |
[17, 78, 1249] |
C3 |
■ |
120) |
[1361, 211, 2624] |
C3 |
■ |
62) |
[41, 151, 5444] |
C3 |
■ |
121) |
[1433, 49, 242] |
C3 |
■ |
24) |
[8, 98, 1433] |
C3 |
■ |
122) |
[1453, 125, 637] |
C3 |
■ |
37) |
[13, 77, 1453] |
C3 |
■ |
123) |
[1481, 41, 50] |
C3 |
■ |
29) |
[8, 82, 1481] |
C3 |
■ |
124) |
[1657, 107, 2448] |
C3 |
■ |
43) |
[17, 167, 6628] |
C3 |
■ |
125) |
[1721, 43, 32] |
C3 |
■ |
28) |
[8, 86, 1721] |
C3 |
■ |
126) |
[1913, 139, 4352] |
C3 |
■ |
42) |
[17, 175, 7652] |
C3 |
■ |
127) |
[1933, 49, 117] |
C3 |
■ |
41) |
[13, 98, 1933] |
C3 |
■ |
128) |
[1949, 73, 845] |
C3 |
■ |
20) |
[5, 89, 1949] |
C3 |
■ |
129) |
[2269, 57, 245] |
C3 |
■ |
3) |
[5, 101, 2269] |
C3 |
■ |
130) |
[2309, 53, 125] |
C3 |
■ |
13) |
[5, 106, 2309] |
C3 |
■ |
131) |
[2393, 49, 2] |
C3 |
■ |
33) |
[8, 98, 2393] |
C3 |
■ |
132) |
[2549, 77, 845] |
C3 |
■ |
1) |
[5, 101, 2549] |
C3 |
■ |
133) |
[2789, 53, 5] |
C3 |
■ |
4) |
[5, 106, 2789] |
C3 |
■ |
134) |
[2969, 59, 128] |
C3 |
■ |
27) |
[8, 118, 2969] |
C3 |
■ |