Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C3 x C105 non-normal (D4) quartic CM field invariants: 216 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 8086, 16344569] C3 x C105 ---) [16344569, 4043, 320] C3 x C1155
2) [5, 5097, 5369101] C3 x C105 213) [5369101, 5009, 4930245] C3 x C105
3) [5, 6014, 8176769] C3 x C105 215) [8176769, 3007, 216320] C3 x C105
4) [8, 4886, 5159257] C3 x C105 212) [5159257, 2443, 202248] C3 x C105
5) [8, 2206, 1215457] C3 x C105 199) [1215457, 1103, 288] C3 x C105
6) [13, 2430, 1416113] C3 x C105 202) [1416113, 1215, 15028] C3 x C105
7) [13, 3102, 1631633] C3 x C105 205) [1631633, 1551, 193492] C3 x C105
8) [13, 5765, 7624093] C3 x C105 ---) [7624093, 8597, 1322893] C105 x C105
9) [17, 7318, 11185081] C3 x C105 216) [11185081, 3659, 550800] C3 x C105
10) [17, 838, 168761] C3 x C105 ---) [168761, 419, 1700] C3 x C3 x C105
11) [17, 5350, 6528937] C3 x C105 214) [6528937, 2675, 156672] C3 x C105
12) [17, 6374, 10152617] C3 x C105 ---) [10152617, 3187, 1088] C3 x C3 x C105
13) [17, 2338, 1361053] C3 x C105 200) [1361053, 1169, 1377] C3 x C105
14) [37, 9301, 21062817] C3 x C105 ---) [2340313, 4655, 151552] C3 x C3 x C105
15) [73, 1790, 128257] C3 x C105 162) [128257, 895, 168192] C3 x C105
16) [101, 1118, 150881] C3 x C105 167) [150881, 559, 40400] C3 x C105
17) [101, 838, 161017] C3 x C105 170) [161017, 419, 3636] C3 x C105
18) [173, 902, 159113] C3 x C105 169) [159113, 451, 11072] C3 x C105
19) [229, 638, 43137] C3 x C105 ---) [4793, 319, 14656] C105
20) [229, 369, 32609] C3 x C105 ---) [32609, 738, 5725] C5 x C105
21) [229, 650, 97381] C3 x C105 ---) [97381, 325, 2061] C105
22) [229, 321, 24329] C3 x C105 ---) [24329, 642, 5725] C105
23) [229, 925, 197361] C3 x C105 ---) [21929, 1850, 66181] C105
24) [229, 853, 94825] C3 x C105 ---) [3793, 691, 110836] C105
25) [257, 1259, 367936] C3 x C105 ---) [5749, 869, 187353] C105
26) [257, 522, 17749] C3 x C105 ---) [17749, 261, 12593] C105
27) [257, 686, 113537] C3 x C105 ---) [113537, 343, 1028] C105
28) [257, 1267, 390464] C3 x C105 ---) [6101, 997, 246977] C105
29) [281, 3766, 1747289] C3 x C105 ---) [1747289, 1883, 449600] C3 x C3 x C105
30) [349, 3662, 136177] C3 x C105 165) [136177, 1831, 804096] C3 x C105
31) [349, 1189, 289825] C3 x C105 109) [11593, 2191, 1174036] C3 x C105
32) [389, 7742, 14885057] C3 x C105 160) [123017, 3871, 24896] C3 x C105
33) [461, 473, 55817] C3 x C105 150) [55817, 946, 461] C3 x C105
34) [509, 1325, 346141] C3 x C105 181) [346141, 2650, 371061] C3 x C105
35) [701, 1334, 400025] C3 x C105 ---) [16001, 667, 11216] C15 x C105
36) [733, 458, 49509] C3 x C105 ---) [5501, 229, 733] C105
37) [733, 529, 17001] C3 x C105 ---) [1889, 1058, 211837] C105
38) [769, 443, 47332] C3 x C105 113) [11833, 886, 6921] C3 x C105
39) [809, 1022, 248177] C3 x C105 177) [248177, 511, 3236] C3 x C105
40) [1009, 435, 16784] C3 x C105 ---) [1049, 870, 122089] C3 x C15
41) [1213, 369, 19181] C3 x C105 130) [19181, 738, 59437] C3 x C105
42) [1217, 1030, 187337] C3 x C105 171) [187337, 515, 19472] C3 x C105
43) [1229, 746, 16229] C3 x C105 ---) [16229, 373, 30725] C105
44) [1373, 1877, 877693] C3 x C105 ---) [3037, 1533, 495653] C105
45) [1493, 409, 38461] C3 x C105 146) [38461, 818, 13437] C3 x C105
46) [1861, 2558, 1159425] C3 x C105 82) [5153, 1279, 119104] C3 x C105
47) [1901, 449, 49925] C3 x C105 ---) [1997, 898, 1901] C105
48) [2089, 687, 29732] C3 x C105 ---) [7433, 1374, 353041] C105
49) [2089, 2043, 717056] C3 x C105 ---) [2801, 1475, 33424] C105
50) [2113, 6083, 8806464] C3 x C105 122) [15289, 3623, 1901700] C3 x C105
51) [2129, 2659, 1703168] C3 x C105 91) [6653, 3977, 2914601] C3 x C105
52) [2129, 2647, 942100] C3 x C105 101) [9421, 4905, 359801] C3 x C105
53) [2221, 2642, 1309725] C3 x C105 ---) [5821, 1321, 108829] C3 x C3 x C105
54) [2269, 1461, 519449] C3 x C105 105) [10601, 2922, 56725] C3 x C105
55) [2557, 3069, 2338709] C3 x C105 ---) [4421, 2301, 738973] C105
56) [2677, 1349, 304369] C3 x C105 ---) [1801, 2399, 267700] C105
57) [2677, 69, 521] C3 x C105 ---) [521, 138, 2677] C105
58) [2693, 2533, 1247873] C3 x C105 ---) [10313, 5066, 1424597] C21 x C105
59) [2741, 381, 2713] C3 x C105 ---) [2713, 762, 134309] C3 x C3 x C105
60) [2741, 3097, 12497] C3 x C105 ---) [12497, 5767, 7411664] C21 x C105
61) [2777, 391, 31972] C3 x C105 ---) [7993, 782, 24993] C105
62) [2797, 417, 9209] C3 x C105 97) [9209, 834, 137053] C3 x C105
63) [2917, 421, 8577] C3 x C105 ---) [953, 842, 142933] C105
64) [3373, 3101, 35361] C3 x C105 71) [3929, 2439, 661108] C3 x C105
65) [3389, 5058, 5731597] C3 x C105 ---) [15877, 2529, 166061] C3 x C1365
66) [3541, 1962, 268325] C3 x C105 ---) [10733, 981, 173509] C3 x C3 x C105
67) [3697, 6191, 8176336] C3 x C105 103) [10429, 4561, 2695113] C3 x C105
68) [3701, 362, 17957] C3 x C105 ---) [17957, 181, 3701] C21 x C105
69) [3877, 2577, 1310333] C3 x C105 ---) [2477, 1945, 3877] C105
70) [3889, 1874, 489069] C3 x C105 ---) [1109, 937, 97225] C105
71) [3929, 2439, 661108] C3 x C105 64) [3373, 3101, 35361] C3 x C105
72) [4001, 1150, 266609] C3 x C105 ---) [5441, 575, 16004] C105
73) [4217, 4127, 335168] C3 x C105 83) [5237, 2765, 1218713] C3 x C105
74) [4373, 6562, 10607533] C3 x C105 115) [12613, 3281, 39357] C3 x C105
75) [4481, 314, 6725] C3 x C105 ---) [269, 157, 4481] C105
76) [4597, 3793, 368469] C3 x C105 ---) [4549, 2917, 1034325] C105
77) [4649, 3318, 1562137] C3 x C105 ---) [2953, 1659, 297536] C105
78) [4729, 1503, 421700] C3 x C105 ---) [4217, 3006, 572209] C105
79) [4813, 1721, 103941] C3 x C105 108) [11549, 3442, 2546077] C3 x C105
80) [4933, 1777, 581013] C3 x C105 ---) [797, 1965, 596893] C105
81) [5101, 3445, 2404621] C3 x C105 92) [6661, 5873, 1147725] C3 x C105
82) [5153, 1279, 119104] C3 x C105 46) [1861, 2558, 1159425] C3 x C105
83) [5237, 2765, 1218713] C3 x C105 73) [4217, 4127, 335168] C3 x C105
84) [5261, 1525, 106601] C3 x C105 ---) [881, 1951, 21044] C105
85) [5261, 805, 2861] C3 x C105 ---) [2861, 1610, 636581] C105
86) [5261, 1901, 681173] C3 x C105 ---) [2357, 3269, 889109] C105
87) [5297, 523, 56464] C3 x C105 ---) [3529, 1046, 47673] C105
88) [5981, 6733, 11080625] C3 x C105 127) [17729, 8443, 2392400] C3 x C105
89) [6133, 1181, 3709] C3 x C105 ---) [3709, 2362, 1379925] C105
90) [6637, 1041, 269261] C3 x C105 ---) [509, 1757, 165925] C105
91) [6653, 3977, 2914601] C3 x C105 51) [2129, 2659, 1703168] C3 x C105
92) [6661, 5873, 1147725] C3 x C105 81) [5101, 3445, 2404621] C3 x C105
93) [7673, 5231, 5442436] C3 x C105 ---) [3769, 4539, 3069200] C105
94) [8069, 1106, 15325] C3 x C105 ---) [613, 553, 72621] C105
95) [8597, 353, 11809] C3 x C105 ---) [241, 706, 77373] C105
96) [8837, 641, 47489] C3 x C105 ---) [281, 1282, 220925] C105
97) [9209, 834, 137053] C3 x C105 62) [2797, 417, 9209] C3 x C105
98) [9293, 1514, 535877] C3 x C105 ---) [1013, 757, 9293] C105
99) [9413, 1246, 237521] C3 x C105 ---) [449, 623, 37652] C105
100) [9413, 889, 138749] C3 x C105 ---) [821, 1778, 235325] C105
101) [9421, 4905, 359801] C3 x C105 52) [2129, 2647, 942100] C3 x C105
102) [10069, 753, 78821] C3 x C105 ---) [149, 1225, 10069] C105
103) [10429, 4561, 2695113] C3 x C105 67) [3697, 6191, 8176336] C3 x C105
104) [10601, 915, 206656] C3 x C105 ---) [3229, 1830, 10601] C3 x C3 x C105
105) [10601, 2922, 56725] C3 x C105 54) [2269, 1461, 519449] C3 x C105
106) [10733, 113, 509] C3 x C105 ---) [509, 226, 10733] C105
107) [10733, 1141, 797] C3 x C105 ---) [797, 2282, 1298693] C105
108) [11549, 3442, 2546077] C3 x C105 79) [4813, 1721, 103941] C3 x C105
109) [11593, 2191, 1174036] C3 x C105 31) [349, 1189, 289825] C3 x C105
110) [11777, 127, 1088] C3 x C105 ---) [17, 254, 11777] C105
111) [11789, 2645, 1250921] C3 x C105 ---) [521, 1415, 47156] C105
112) [11821, 3238, 2432025] C3 x C105 ---) [1201, 1619, 47284] C105
113) [11833, 886, 6921] C3 x C105 38) [769, 443, 47332] C3 x C105
114) [12577, 335, 24912] C3 x C105 ---) [173, 670, 12577] C105
115) [12613, 3281, 39357] C3 x C105 74) [4373, 6562, 10607533] C3 x C105
116) [12821, 1417, 473125] C3 x C105 ---) [757, 2834, 115389] C105
117) [12821, 617, 15041] C3 x C105 ---) [89, 1055, 51284] C105
118) [14653, 849, 701] C3 x C105 ---) [701, 1698, 717997] C105
119) [14653, 842, 118629] C3 x C105 ---) [269, 421, 14653] C105
120) [14969, 1483, 366452] C3 x C105 ---) [317, 1789, 733481] C105
121) [15193, 1411, 311616] C3 x C105 ---) [541, 2822, 744457] C105
122) [15289, 3623, 1901700] C3 x C105 50) [2113, 6083, 8806464] C3 x C105
123) [15349, 1125, 128381] C3 x C105 ---) [1061, 2250, 752101] C105
124) [16553, 391, 976] C3 x C105 ---) [61, 782, 148977] C105
125) [16649, 647, 596] C3 x C105 ---) [149, 1294, 416225] C105
126) [17417, 4511, 3515396] C3 x C105 ---) [3041, 6359, 8429828] C105
127) [17729, 8443, 2392400] C3 x C105 88) [5981, 6733, 11080625] C3 x C105
128) [17737, 579, 79376] C3 x C105 ---) [41, 799, 70948] C21
129) [18541, 3217, 135225] C3 x C105 ---) [601, 2215, 667476] C105
130) [19181, 738, 59437] C3 x C105 41) [1213, 369, 19181] C3 x C105
131) [19213, 1374, 164561] C3 x C105 ---) [89, 687, 76852] C105
132) [19429, 445, 44649] C3 x C105 ---) [41, 890, 19429] C105
133) [19469, 461, 9325] C3 x C105 ---) [373, 922, 175221] C105
134) [20297, 439, 2512] C3 x C105 ---) [157, 878, 182673] C105
135) [20549, 746, 56933] C3 x C105 ---) [197, 373, 20549] C105
136) [22717, 153, 173] C3 x C105 ---) [173, 306, 22717] C105
137) [23909, 861, 179353] C3 x C105 ---) [97, 1551, 382544] C105
138) [23957, 677, 108593] C3 x C105 ---) [113, 1354, 23957] C105
139) [25469, 409, 35453] C3 x C105 ---) [293, 818, 25469] C105
140) [27617, 939, 47824] C3 x C105 ---) [61, 1301, 248553] C105
141) [28669, 1609, 640053] C3 x C105 ---) [197, 2493, 1404781] C105
142) [31121, 1735, 122356] C3 x C105 ---) [181, 1833, 778025] C105
143) [33581, 581, 8833] C3 x C105 ---) [73, 1162, 302229] C105
144) [35537, 207, 1828] C3 x C105 ---) [457, 414, 35537] C105
145) [36653, 193, 149] C3 x C105 ---) [149, 386, 36653] C105
146) [38461, 818, 13437] C3 x C105 45) [1493, 409, 38461] C3 x C105
147) [44357, 2602, 95749] C3 x C105 ---) [181, 1301, 399213] C105
148) [47353, 299, 10512] C3 x C105 ---) [73, 598, 47353] C105
149) [50033, 1583, 13568] C3 x C105 ---) [53, 1433, 50033] C105
150) [55817, 946, 461] C3 x C105 33) [461, 473, 55817] C3 x C105
151) [55901, 249, 1525] C3 x C105 ---) [61, 498, 55901] C105
152) [68489, 1931, 93200] C3 x C105 ---) [233, 3862, 3355961] C105
153) [70529, 1074, 6253] C3 x C105 ---) [37, 537, 70529] C105
154) [74713, 1322, 138069] C3 x C105 ---) [29, 661, 74713] C105
155) [79493, 1306, 108437] C3 x C105 ---) [2213, 653, 79493] C3 x C3 x C105
156) [90437, 301, 41] C3 x C105 ---) [41, 602, 90437] C105
157) [92557, 377, 12393] C3 x C105 ---) [17, 754, 92557] C105
158) [92857, 875, 168192] C3 x C105 ---) [73, 1750, 92857] C105
159) [120577, 511, 35136] C3 x C105 ---) [61, 1022, 120577] C105
160) [123017, 3871, 24896] C3 x C105 32) [389, 7742, 14885057] C3 x C105
161) [125897, 355, 32] C3 x C105 ---) [8, 710, 125897] C21
162) [128257, 895, 168192] C3 x C105 15) [73, 1790, 128257] C3 x C105
163) [133981, 1409, 462825] C3 x C105 ---) [17, 1487, 535924] C105
164) [135209, 1127, 13312] C3 x C105 ---) [13, 969, 135209] C105
165) [136177, 1831, 804096] C3 x C105 30) [349, 3662, 136177] C3 x C105
166) [136813, 1538, 44109] C3 x C105 ---) [29, 769, 136813] C105
167) [150881, 559, 40400] C3 x C105 16) [101, 1118, 150881] C3 x C105
168) [152017, 463, 15588] C3 x C105 ---) [433, 926, 152017] C105
169) [159113, 451, 11072] C3 x C105 18) [173, 902, 159113] C3 x C105
170) [161017, 419, 3636] C3 x C105 17) [101, 838, 161017] C3 x C105
171) [187337, 515, 19472] C3 x C105 42) [1217, 1030, 187337] C3 x C105
172) [199697, 535, 21632] C3 x C105 ---) [8, 1070, 199697] C105
173) [204437, 525, 17797] C3 x C105 ---) [13, 1050, 204437] C3 x C21
174) [229561, 1131, 262400] C3 x C105 ---) [41, 2262, 229561] C105
175) [229837, 497, 4293] C3 x C105 ---) [53, 994, 229837] C105
176) [241321, 1267, 340992] C3 x C105 ---) [37, 2534, 241321] C105
177) [248177, 511, 3236] C3 x C105 39) [809, 1022, 248177] C3 x C105
178) [248189, 633, 38125] C3 x C105 ---) [61, 1266, 248189] C105
179) [274693, 533, 2349] C3 x C105 ---) [29, 1066, 274693] C105
180) [309121, 671, 35280] C3 x C105 ---) [5, 1173, 309121] C105
181) [346141, 2650, 371061] C3 x C105 34) [509, 1325, 346141] C3 x C105
182) [375097, 2015, 171088] C3 x C105 ---) [37, 4030, 3375873] C105
183) [392593, 687, 19844] C3 x C105 ---) [41, 1374, 392593] C105
184) [418321, 1979, 37888] C3 x C105 ---) [37, 3958, 3764889] C105
185) [434201, 659, 20] C3 x C105 ---) [5, 1318, 434201] C105
186) [436913, 661, 2] C3 x C105 ---) [8, 1322, 436913] C105
187) [511541, 717, 637] C3 x C105 ---) [13, 1434, 511541] C105
188) [586769, 887, 50000] C3 x C105 ---) [5, 1661, 586769] C105
189) [591601, 799, 11700] C3 x C105 ---) [13, 1598, 591601] C105
190) [598729, 777, 1250] C3 x C105 ---) [8, 1554, 598729] C105
191) [694633, 835, 648] C3 x C105 ---) [8, 1670, 694633] C105
192) [727369, 931, 34848] C3 x C105 ---) [8, 1862, 727369] C105
193) [799609, 897, 1250] C3 x C105 ---) [8, 1794, 799609] C105
194) [806857, 905, 3042] C3 x C105 ---) [8, 1810, 806857] C105
195) [840817, 3275, 789568] C3 x C105 ---) [73, 6550, 7567353] C105
196) [870809, 1003, 33800] C3 x C105 ---) [8, 2006, 870809] C105
197) [872281, 1243, 168192] C3 x C105 ---) [73, 2486, 872281] C105
198) [929561, 1019, 27200] C3 x C105 ---) [17, 2038, 929561] C105
199) [1215457, 1103, 288] C3 x C105 5) [8, 2206, 1215457] C3 x C105
200) [1361053, 1169, 1377] C3 x C105 13) [17, 2338, 1361053] C3 x C105
201) [1391561, 1187, 4352] C3 x C105 ---) [17, 2374, 1391561] C105
202) [1416113, 1215, 15028] C3 x C105 6) [13, 2430, 1416113] C3 x C105
203) [1454969, 1211, 2888] C3 x C105 ---) [8, 2422, 1454969] C105
204) [1517849, 1243, 6800] C3 x C105 ---) [17, 2486, 1517849] C105
205) [1631633, 1551, 193492] C3 x C105 7) [13, 3102, 1631633] C3 x C105
206) [1649129, 1427, 96800] C3 x C105 ---) [8, 2854, 1649129] C105
207) [1714189, 1713, 305045] C3 x C105 ---) [5, 2669, 1714189] C105
208) [1897097, 1475, 69632] C3 x C105 ---) [17, 2950, 1897097] C105
209) [2464361, 1619, 39200] C3 x C105 ---) [8, 3238, 2464361] C105
210) [2506549, 1613, 23805] C3 x C105 ---) [5, 3226, 2506549] C105
211) [4944713, 2249, 28322] C3 x C105 ---) [8, 4498, 4944713] C105
212) [5159257, 2443, 202248] C3 x C105 4) [8, 4886, 5159257] C3 x C105
213) [5369101, 5009, 4930245] C3 x C105 2) [5, 5097, 5369101] C3 x C105
214) [6528937, 2675, 156672] C3 x C105 11) [17, 5350, 6528937] C3 x C105
215) [8176769, 3007, 216320] C3 x C105 3) [5, 6014, 8176769] C3 x C105
216) [11185081, 3659, 550800] C3 x C105 9) [17, 7318, 11185081] C3 x C105