Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C3 x C135 non-normal (D4) quartic CM field invariants: 221 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 6926, 10640369] C3 x C135 219) [10640369, 3463, 338000] C3 x C135
2) [5, 3413, 2814841] C3 x C135 208) [2814841, 2211, 518420] C3 x C135
3) [5, 3718, 3429961] C3 x C135 212) [3429961, 1859, 6480] C3 x C135
4) [8, 7078, 10861033] C3 x C135 220) [10861033, 3539, 415872] C3 x C135
5) [8, 5342, 5904929] C3 x C135 217) [5904929, 2671, 307328] C3 x C135
6) [8, 9334, 21615001] C3 x C135 221) [21615001, 4667, 41472] C3 x C135
7) [8, 2414, 1197649] C3 x C135 195) [1197649, 1207, 64800] C3 x C135
8) [13, 4062, 4124753] C3 x C135 215) [4124753, 2031, 52] C3 x C135
9) [17, 2150, 271897] C3 x C135 177) [271897, 1075, 220932] C3 x C135
10) [29, 2338, 1294061] C3 x C135 199) [1294061, 1169, 18125] C3 x C135
11) [37, 4037, 4073593] C3 x C135 214) [4073593, 8074, 2997] C3 x C135
12) [41, 6886, 9797033] C3 x C135 218) [9797033, 3443, 514304] C3 x C135
13) [41, 3766, 3167833] C3 x C135 ---) [3167833, 1883, 94464] C3 x C3 x C135
14) [53, 2354, 1385117] C3 x C135 ---) [1385117, 1177, 53] C3 x C9 x C135
15) [73, 6390, 5423897] C3 x C135 216) [5423897, 3195, 1196032] C3 x C135
16) [101, 1978, 945397] C3 x C135 ---) [945397, 989, 8181] C15 x C135
17) [113, 3590, 3193097] C3 x C135 211) [3193097, 1795, 7232] C3 x C135
18) [157, 2605, 1691757] C3 x C135 169) [187973, 5210, 18997] C3 x C135
19) [173, 1178, 340693] C3 x C135 ---) [340693, 589, 1557] C3 x C3 x C135
20) [257, 367, 19216] C3 x C135 ---) [1201, 427, 9252] C135
21) [257, 1039, 264676] C3 x C135 ---) [66169, 2078, 20817] C135
22) [337, 618, 61781] C3 x C135 158) [61781, 309, 8425] C3 x C135
23) [461, 886, 78233] C3 x C135 161) [78233, 443, 29504] C3 x C135
24) [641, 1430, 470201] C3 x C135 ---) [470201, 715, 10256] C3 x C3 x C135
25) [673, 2482, 934381] C3 x C135 132) [19069, 1241, 151425] C3 x C135
26) [733, 1281, 5441] C3 x C135 ---) [5441, 2131, 143668] C135
27) [733, 3238, 1448361] C3 x C135 ---) [17881, 1619, 293200] C135
28) [761, 631, 94784] C3 x C135 ---) [1481, 1043, 76100] C135
29) [1013, 737, 129461] C3 x C135 166) [129461, 1474, 25325] C3 x C135
30) [1109, 989, 244253] C3 x C135 175) [244253, 1978, 1109] C3 x C135
31) [1213, 1169, 317077] C3 x C135 181) [317077, 2338, 98253] C3 x C135
32) [1213, 717, 120941] C3 x C135 165) [120941, 1434, 30325] C3 x C135
33) [1229, 226, 7853] C3 x C135 ---) [7853, 113, 1229] C135
34) [1373, 969, 217921] C3 x C135 ---) [1801, 1443, 87872] C135
35) [1409, 1118, 289937] C3 x C135 179) [289937, 559, 5636] C3 x C135
36) [1489, 827, 167632] C3 x C135 ---) [10477, 1654, 13401] C135
37) [1901, 734, 13025] C3 x C135 ---) [521, 367, 30416] C135
38) [1901, 1378, 467117] C3 x C135 ---) [9533, 689, 1901] C135
39) [2213, 1006, 111377] C3 x C135 ---) [2273, 503, 35408] C135
40) [2213, 266, 8837] C3 x C135 97) [8837, 133, 2213] C3 x C135
41) [2213, 2309, 4517] C3 x C135 ---) [4517, 2165, 1170677] C135
42) [2221, 4694, 391225] C3 x C135 118) [15649, 2347, 1279296] C3 x C135
43) [2273, 591, 59476] C3 x C135 116) [14869, 1182, 111377] C3 x C135
44) [2557, 201, 9461] C3 x C135 ---) [9461, 402, 2557] C135
45) [2621, 1654, 12953] C3 x C135 110) [12953, 827, 167744] C3 x C135
46) [2657, 2266, 422821] C3 x C135 96) [8629, 1133, 215217] C3 x C135
47) [2677, 1201, 65461] C3 x C135 ---) [541, 913, 2677] C135
48) [2677, 1913, 427009] C3 x C135 ---) [3529, 3199, 2409300] C135
49) [2753, 4331, 817984] C3 x C135 108) [12781, 4077, 3768857] C3 x C135
50) [2777, 1571, 183104] C3 x C135 ---) [2861, 2533, 1002497] C135
51) [2777, 1058, 2141] C3 x C135 ---) [2141, 529, 69425] C135
52) [3037, 4929, 5854337] C3 x C135 ---) [16217, 5031, 777472] C3 x C945
53) [3221, 621, 56953] C3 x C135 ---) [337, 879, 51536] C135
54) [3229, 434, 34173] C3 x C135 ---) [3797, 217, 3229] C135
55) [3229, 881, 12409] C3 x C135 ---) [12409, 1762, 726525] C9 x C135
56) [3257, 3218, 387149] C3 x C135 92) [7901, 1609, 550433] C3 x C135
57) [3257, 5738, 1339349] C3 x C135 102) [11069, 2869, 1722953] C3 x C135
58) [3457, 282, 6053] C3 x C135 ---) [6053, 141, 3457] C3 x C3 x C135
59) [3469, 8213, 1522557] C3 x C135 130) [18797, 5037, 586261] C3 x C135
60) [3517, 2841, 1974737] C3 x C135 85) [6833, 4531, 689332] C3 x C135
61) [3613, 1874, 169821] C3 x C135 131) [18869, 937, 177037] C3 x C135
62) [3673, 2186, 474741] C3 x C135 82) [5861, 1093, 179977] C3 x C135
63) [3877, 1217, 206469] C3 x C135 ---) [2549, 2434, 655213] C135
64) [3889, 943, 174672] C3 x C135 ---) [1213, 1886, 190561] C135
65) [4133, 221, 11177] C3 x C135 103) [11177, 442, 4133] C3 x C135
66) [4261, 6385, 7421341] C3 x C135 115) [14029, 7741, 7878589] C3 x C135
67) [4289, 2523, 123472] C3 x C135 90) [7717, 5046, 5871641] C3 x C135
68) [4493, 2885, 3917] C3 x C135 ---) [3917, 4445, 543653] C135
69) [4597, 929, 187029] C3 x C135 ---) [2309, 1858, 114925] C135
70) [4729, 2070, 768569] C3 x C135 ---) [2129, 1035, 75664] C135
71) [5077, 2113, 48753] C3 x C135 ---) [5417, 4226, 4269757] C3 x C945
72) [5237, 2618, 16693] C3 x C135 122) [16693, 1309, 424197] C3 x C135
73) [5297, 1691, 491072] C3 x C135 88) [7673, 3382, 895193] C3 x C135
74) [5309, 1533, 426925] C3 x C135 124) [17077, 3066, 642389] C3 x C135
75) [5333, 1885, 502997] C3 x C135 ---) [4157, 3770, 1541237] C135
76) [5393, 4559, 5194772] C3 x C135 ---) [10733, 7133, 5182673] C3 x C3 x C135
77) [5477, 3037, 4133] C3 x C135 ---) [4133, 4153, 2897333] C135
78) [5573, 2521, 417137] C3 x C135 95) [8513, 5042, 4686893] C3 x C135
79) [5741, 1289, 593] C3 x C135 ---) [593, 1403, 367424] C135
80) [5749, 6029, 117333] C3 x C135 111) [13037, 6449, 9664069] C3 x C135
81) [5821, 4733, 5587225] C3 x C135 ---) [4561, 4391, 4563664] C135
82) [5861, 1093, 179977] C3 x C135 62) [3673, 2186, 474741] C3 x C135
83) [5981, 1717, 484325] C3 x C135 133) [19373, 3434, 1010789] C3 x C135
84) [6133, 1373, 347089] C3 x C135 ---) [1201, 2687, 613300] C135
85) [6833, 4531, 689332] C3 x C135 60) [3517, 2841, 1974737] C3 x C135
86) [6997, 602, 62613] C3 x C135 ---) [773, 301, 6997] C135
87) [7537, 3014, 341577] C3 x C135 ---) [4217, 1507, 482368] C135
88) [7673, 3382, 895193] C3 x C135 73) [5297, 1691, 491072] C3 x C135
89) [7673, 1499, 7376] C3 x C135 ---) [461, 1369, 191825] C135
90) [7717, 5046, 5871641] C3 x C135 67) [4289, 2523, 123472] C3 x C135
91) [7753, 3791, 1218564] C3 x C135 ---) [3761, 4791, 5241028] C135
92) [7901, 1609, 550433] C3 x C135 56) [3257, 3218, 387149] C3 x C135
93) [8069, 698, 89525] C3 x C135 ---) [3581, 349, 8069] C135
94) [8069, 4466, 4179389] C3 x C135 ---) [4349, 2233, 201725] C135
95) [8513, 5042, 4686893] C3 x C135 78) [5573, 2521, 417137] C3 x C135
96) [8629, 1133, 215217] C3 x C135 46) [2657, 2266, 422821] C3 x C135
97) [8837, 133, 2213] C3 x C135 40) [2213, 266, 8837] C3 x C135
98) [9293, 3037, 351989] C3 x C135 ---) [2909, 5497, 5808125] C135
99) [10301, 1342, 285425] C3 x C135 ---) [233, 671, 41204] C135
100) [10333, 3377, 2641789] C3 x C135 ---) [2749, 5369, 6458125] C135
101) [11057, 4727, 939428] C3 x C135 ---) [4793, 6923, 707648] C135
102) [11069, 2869, 1722953] C3 x C135 57) [3257, 5738, 1339349] C3 x C135
103) [11177, 442, 4133] C3 x C135 65) [4133, 221, 11177] C3 x C135
104) [11197, 4661, 3390577] C3 x C135 ---) [2017, 3515, 2866432] C135
105) [11789, 3121, 2432213] C3 x C135 ---) [1013, 2933, 1992341] C135
106) [12197, 1074, 239581] C3 x C135 ---) [829, 537, 12197] C135
107) [12269, 1041, 120625] C3 x C135 ---) [193, 1331, 441684] C135
108) [12781, 4077, 3768857] C3 x C135 49) [2753, 4331, 817984] C3 x C135
109) [12821, 461, 49925] C3 x C135 ---) [1997, 922, 12821] C135
110) [12953, 827, 167744] C3 x C135 45) [2621, 1654, 12953] C3 x C135
111) [13037, 6449, 9664069] C3 x C135 80) [5749, 6029, 117333] C3 x C135
112) [13577, 498, 7693] C3 x C135 ---) [157, 249, 13577] C135
113) [13693, 209, 7497] C3 x C135 ---) [17, 418, 13693] C27
114) [13877, 1061, 421] C3 x C135 ---) [421, 2122, 1124037] C135
115) [14029, 7741, 7878589] C3 x C135 66) [4261, 6385, 7421341] C3 x C135
116) [14869, 1182, 111377] C3 x C135 43) [2273, 591, 59476] C3 x C135
117) [15061, 3785, 414981] C3 x C135 ---) [941, 2037, 376525] C135
118) [15649, 2347, 1279296] C3 x C135 42) [2221, 4694, 391225] C3 x C135
119) [15661, 3797, 1877677] C3 x C135 ---) [1117, 2309, 767389] C135
120) [15737, 4718, 5313089] C3 x C135 ---) [3881, 2359, 62948] C135
121) [16553, 1230, 113377] C3 x C135 ---) [937, 615, 66212] C135
122) [16693, 1309, 424197] C3 x C135 72) [5237, 2618, 16693] C3 x C135
123) [17053, 393, 34349] C3 x C135 ---) [701, 786, 17053] C135
124) [17077, 3066, 642389] C3 x C135 74) [5309, 1533, 426925] C3 x C135
125) [17609, 4643, 1158800] C3 x C135 ---) [2897, 5839, 8522756] C135
126) [17929, 1583, 586132] C3 x C135 ---) [277, 2309, 878521] C135
127) [17929, 611, 88848] C3 x C135 ---) [617, 1222, 17929] C135
128) [18661, 1625, 95661] C3 x C135 ---) [1181, 3250, 2257981] C135
129) [18773, 2117, 890453] C3 x C135 ---) [317, 1433, 18773] C3 x C27
130) [18797, 5037, 586261] C3 x C135 59) [3469, 8213, 1522557] C3 x C135
131) [18869, 937, 177037] C3 x C135 61) [3613, 1874, 169821] C3 x C135
132) [19069, 1241, 151425] C3 x C135 25) [673, 2482, 934381] C3 x C135
133) [19373, 3434, 1010789] C3 x C135 83) [5981, 1717, 484325] C3 x C135
134) [19949, 145, 269] C3 x C135 ---) [269, 290, 19949] C135
135) [20297, 195, 4432] C3 x C135 ---) [277, 390, 20297] C135
136) [21101, 2138, 383125] C3 x C135 ---) [613, 1069, 189909] C135
137) [21433, 331, 22032] C3 x C135 ---) [17, 631, 85732] C15
138) [21557, 157, 773] C3 x C135 ---) [773, 314, 21557] C135
139) [22709, 834, 83053] C3 x C135 ---) [157, 417, 22709] C135
140) [23321, 211, 5300] C3 x C135 ---) [53, 422, 23321] C135
141) [24413, 1518, 185473] C3 x C135 ---) [193, 759, 97652] C135
142) [26113, 767, 140544] C3 x C135 ---) [61, 1193, 235017] C135
143) [26893, 1930, 823653] C3 x C135 ---) [173, 965, 26893] C135
144) [27437, 1557, 434581] C3 x C135 ---) [181, 1773, 685925] C135
145) [28349, 1417, 154697] C3 x C135 ---) [113, 1819, 453584] C135
146) [28669, 385, 29889] C3 x C135 ---) [41, 770, 28669] C135
147) [32833, 2930, 964237] C3 x C135 ---) [277, 1465, 295497] C135
148) [38053, 977, 801] C3 x C135 ---) [89, 1954, 951325] C135
149) [39157, 1114, 153621] C3 x C135 ---) [101, 557, 39157] C135
150) [41057, 1487, 542528] C3 x C135 ---) [173, 2389, 41057] C135
151) [41597, 938, 53573] C3 x C135 ---) [317, 469, 41597] C135
152) [43441, 679, 104400] C3 x C135 ---) [29, 933, 43441] C135
153) [45361, 858, 2597] C3 x C135 ---) [53, 429, 45361] C135
154) [48677, 1658, 492533] C3 x C135 ---) [293, 829, 48677] C135
155) [52709, 253, 2825] C3 x C135 ---) [113, 506, 52709] C135
156) [53017, 315, 11552] C3 x C135 ---) [8, 630, 53017] C27
157) [56489, 267, 3700] C3 x C135 ---) [37, 534, 56489] C135
158) [61781, 309, 8425] C3 x C135 22) [337, 618, 61781] C3 x C135
159) [62473, 2911, 228672] C3 x C135 ---) [397, 4945, 5060313] C135
160) [76913, 743, 118784] C3 x C135 ---) [29, 1486, 76913] C135
161) [78233, 443, 29504] C3 x C135 23) [461, 886, 78233] C3 x C135
162) [89261, 3914, 616453] C3 x C135 ---) [733, 1957, 803349] C3 x C3 x C135
163) [105761, 335, 1616] C3 x C135 ---) [101, 670, 105761] C135
164) [114601, 1378, 16317] C3 x C135 ---) [37, 689, 114601] C135
165) [120941, 1434, 30325] C3 x C135 32) [1213, 717, 120941] C3 x C135
166) [129461, 1474, 25325] C3 x C135 29) [1013, 737, 129461] C3 x C135
167) [157433, 459, 13312] C3 x C135 ---) [13, 918, 157433] C135
168) [183697, 455, 5832] C3 x C135 ---) [8, 910, 183697] C135
169) [187973, 5210, 18997] C3 x C135 18) [157, 2605, 1691757] C3 x C135
170) [188833, 1807, 769104] C3 x C135 ---) [109, 3614, 188833] C135
171) [188861, 481, 10625] C3 x C135 ---) [17, 962, 188861] C135
172) [190649, 843, 130000] C3 x C135 ---) [13, 1473, 190649] C135
173) [208409, 603, 38800] C3 x C135 ---) [97, 1206, 208409] C135
174) [227653, 1633, 154453] C3 x C135 ---) [13, 1585, 227653] C135
175) [244253, 1978, 1109] C3 x C135 30) [1109, 989, 244253] C3 x C135
176) [261089, 511, 8] C3 x C135 ---) [8, 1022, 261089] C135
177) [271897, 1075, 220932] C3 x C135 9) [17, 2150, 271897] C3 x C135
178) [278801, 599, 20000] C3 x C135 ---) [8, 1198, 278801] C135
179) [289937, 559, 5636] C3 x C135 35) [1409, 1118, 289937] C3 x C135
180) [312601, 659, 30420] C3 x C135 ---) [5, 1197, 312601] C135
181) [317077, 2338, 98253] C3 x C135 31) [1213, 1169, 317077] C3 x C135
182) [335681, 599, 5780] C3 x C135 ---) [5, 1198, 335681] C135
183) [337457, 615, 10192] C3 x C135 ---) [13, 1230, 337457] C135
184) [344017, 613, 7938] C3 x C135 ---) [8, 1226, 344017] C135
185) [393377, 815, 67712] C3 x C135 ---) [8, 1630, 393377] C135
186) [459257, 1451, 411536] C3 x C135 ---) [89, 2902, 459257] C135
187) [497813, 805, 37553] C3 x C135 ---) [17, 1610, 497813] C135
188) [510481, 719, 1620] C3 x C135 ---) [5, 1438, 510481] C135
189) [732889, 883, 11700] C3 x C135 ---) [13, 1766, 732889] C135
190) [790529, 1847, 655220] C3 x C135 ---) [5, 1921, 790529] C135
191) [1037081, 1019, 320] C3 x C135 ---) [5, 2038, 1037081] C135
192) [1046329, 1803, 551120] C3 x C135 ---) [5, 2089, 1046329] C135
193) [1053449, 1027, 320] C3 x C135 ---) [5, 2054, 1053449] C135
194) [1139321, 1483, 264992] C3 x C135 ---) [8, 2966, 1139321] C135
195) [1197649, 1207, 64800] C3 x C135 7) [8, 2414, 1197649] C3 x C135
196) [1207769, 1099, 8] C3 x C135 ---) [8, 2198, 1207769] C135
197) [1219849, 1923, 619520] C3 x C135 ---) [5, 2249, 1219849] C135
198) [1255249, 1527, 269120] C3 x C135 ---) [5, 2261, 1255249] C135
199) [1294061, 1169, 18125] C3 x C135 10) [29, 2338, 1294061] C3 x C135
200) [1378249, 1193, 11250] C3 x C135 ---) [8, 2386, 1378249] C135
201) [1535249, 1687, 327680] C3 x C135 ---) [5, 2501, 1535249] C135
202) [1569329, 2047, 655220] C3 x C135 ---) [5, 2521, 1569329] C135
203) [1732261, 1941, 508805] C3 x C135 ---) [5, 2633, 1732261] C135
204) [1746637, 4541, 1225237] C3 x C135 ---) [13, 2645, 1746637] C135
205) [1855169, 1367, 3380] C3 x C135 ---) [5, 2734, 1855169] C135
206) [2163181, 2049, 508805] C3 x C135 ---) [5, 2957, 2163181] C135
207) [2595641, 1771, 135200] C3 x C135 ---) [8, 3542, 2595641] C135
208) [2814841, 2211, 518420] C3 x C135 2) [5, 3413, 2814841] C3 x C135
209) [2977049, 1787, 54080] C3 x C135 ---) [5, 3574, 2977049] C135
210) [3182189, 3137, 1664645] C3 x C135 ---) [5, 3641, 3182189] C135
211) [3193097, 1795, 7232] C3 x C135 17) [113, 3590, 3193097] C3 x C135
212) [3429961, 1859, 6480] C3 x C135 3) [5, 3718, 3429961] C3 x C135
213) [3662909, 3673, 2457005] C3 x C135 ---) [5, 4009, 3662909] C135
214) [4073593, 8074, 2997] C3 x C135 11) [37, 4037, 4073593] C3 x C135
215) [4124753, 2031, 52] C3 x C135 8) [13, 4062, 4124753] C3 x C135
216) [5423897, 3195, 1196032] C3 x C135 15) [73, 6390, 5423897] C3 x C135
217) [5904929, 2671, 307328] C3 x C135 5) [8, 5342, 5904929] C3 x C135
218) [9797033, 3443, 514304] C3 x C135 12) [41, 6886, 9797033] C3 x C135
219) [10640369, 3463, 338000] C3 x C135 1) [5, 6926, 10640369] C3 x C135
220) [10861033, 3539, 415872] C3 x C135 4) [8, 7078, 10861033] C3 x C135
221) [21615001, 4667, 41472] C3 x C135 6) [8, 9334, 21615001] C3 x C135