Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C3 x C183 non-normal (D4) quartic CM field invariants: 119 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 5438, 7289281] C3 x C183 119) [7289281, 2719, 25920] C3 x C183
2) [13, 4926, 5482097] C3 x C183 117) [5482097, 2463, 146068] C3 x C183
3) [89, 3958, 3096217] C3 x C183 113) [3096217, 1979, 205056] C3 x C183
4) [181, 3061, 1417113] C3 x C183 ---) [157457, 5163, 11584] C3 x C2013
5) [229, 426, 44453] C3 x C183 ---) [44453, 213, 229] C183
6) [229, 2505, 47681] C3 x C183 ---) [47681, 3311, 58624] C3 x C549
7) [229, 1353, 44021] C3 x C183 ---) [44021, 2706, 1654525] C183
8) [229, 253, 3121] C3 x C183 ---) [3121, 506, 51525] C915
9) [229, 721, 88225] C3 x C183 ---) [3529, 631, 91600] C183
10) [257, 1890, 28477] C3 x C183 ---) [28477, 945, 216137] C183
11) [281, 3094, 2321273] C3 x C183 ---) [2321273, 1547, 17984] C3 x C3 x C183
12) [733, 265, 2713] C3 x C183 31) [2713, 530, 59373] C3 x C183
13) [733, 249, 6521] C3 x C183 ---) [6521, 498, 35917] C183
14) [761, 766, 134513] C3 x C183 84) [134513, 383, 3044] C3 x C183
15) [761, 242, 11597] C3 x C183 ---) [11597, 121, 761] C183
16) [761, 2703, 1566100] C3 x C183 61) [15661, 2645, 335601] C3 x C183
17) [1049, 2182, 586057] C3 x C183 95) [586057, 1091, 151056] C3 x C183
18) [1201, 1103, 236596] C3 x C183 ---) [59149, 2206, 270225] C3 x C915
19) [1289, 1879, 740548] C3 x C183 87) [185137, 3758, 568449] C3 x C183
20) [1597, 1633, 417141] C3 x C183 74) [46349, 3266, 998125] C3 x C183
21) [1901, 2397, 101425] C3 x C183 ---) [4057, 1719, 372596] C183
22) [1901, 2198, 112825] C3 x C183 ---) [4513, 1099, 273744] C183
23) [2053, 570, 73013] C3 x C183 ---) [73013, 285, 2053] C3 x C3 x C183
24) [2089, 1603, 491472] C3 x C183 ---) [3413, 2397, 2089] C183
25) [2293, 570, 72053] C3 x C183 80) [72053, 285, 2293] C3 x C183
26) [2437, 469, 5641] C3 x C183 45) [5641, 938, 197397] C3 x C183
27) [2557, 1910, 748377] C3 x C183 ---) [1697, 955, 40912] C183
28) [2677, 2949, 1531001] C3 x C183 ---) [4241, 2159, 10708] C183
29) [2677, 3333, 1652213] C3 x C183 ---) [5717, 2349, 966397] C183
30) [2677, 2358, 319241] C3 x C183 ---) [1889, 1179, 267700] C183
31) [2713, 530, 59373] C3 x C183 12) [733, 265, 2713] C3 x C183
32) [2917, 3413, 17749] C3 x C183 ---) [17749, 6826, 11577573] C183
33) [2917, 4354, 4447629] C3 x C183 ---) [6101, 2177, 72925] C183
34) [3229, 2329, 929025] C3 x C183 ---) [4129, 3439, 2906100] C183
35) [3413, 4173, 4352629] C3 x C183 ---) [15061, 6333, 986357] C3 x C3 x C183
36) [4337, 6787, 2138164] C3 x C183 ---) [10909, 3793, 975825] C3 x C915
37) [4457, 1847, 40564] C3 x C183 53) [10141, 3694, 3249153] C3 x C183
38) [4493, 2053, 863873] C3 x C183 ---) [2393, 3079, 287552] C183
39) [4561, 4087, 2441572] C3 x C183 57) [12457, 7747, 14303296] C3 x C183
40) [4597, 3349, 2085669] C3 x C183 ---) [2861, 2577, 1659517] C183
41) [5081, 3262, 1928497] C3 x C183 ---) [6673, 1631, 182916] C183
42) [5261, 1546, 408133] C3 x C183 ---) [3373, 773, 47349] C183
43) [5281, 167, 5652] C3 x C183 ---) [157, 334, 5281] C183
44) [5569, 8203, 16319700] C3 x C183 66) [18133, 6817, 6064641] C3 x C183
45) [5641, 938, 197397] C3 x C183 26) [2437, 469, 5641] C3 x C183
46) [5821, 461, 16749] C3 x C183 ---) [1861, 922, 145525] C183
47) [5821, 6001, 8233173] C3 x C183 ---) [5413, 3049, 471501] C183
48) [6053, 2797, 1881653] C3 x C183 ---) [3557, 3913, 732413] C183
49) [7673, 2203, 198548] C3 x C183 ---) [1013, 2165, 928433] C183
50) [7753, 354, 317] C3 x C183 ---) [317, 177, 7753] C183
51) [9413, 801, 101569] C3 x C183 ---) [601, 1602, 235325] C183
52) [9833, 415, 20932] C3 x C183 ---) [5233, 830, 88497] C183
53) [10141, 3694, 3249153] C3 x C183 37) [4457, 1847, 40564] C3 x C183
54) [10733, 161, 3797] C3 x C183 ---) [3797, 322, 10733] C183
55) [12269, 129, 1093] C3 x C183 ---) [1093, 258, 12269] C915
56) [12269, 737, 132725] C3 x C183 ---) [5309, 1474, 12269] C183
57) [12457, 7747, 14303296] C3 x C183 39) [4561, 4087, 2441572] C3 x C183
58) [13577, 1259, 229952] C3 x C183 ---) [3593, 2518, 665273] C183
59) [13877, 1665, 273277] C3 x C183 ---) [757, 3330, 1679117] C183
60) [14389, 1453, 236425] C3 x C183 ---) [193, 1003, 230224] C183
61) [15661, 2645, 335601] C3 x C183 16) [761, 2703, 1566100] C3 x C183
62) [15881, 7931, 9051200] C3 x C183 ---) [5657, 6263, 63524] C183
63) [16673, 367, 29504] C3 x C183 ---) [461, 734, 16673] C183
64) [17477, 2182, 71753] C3 x C183 ---) [593, 1091, 279632] C183
65) [17609, 6207, 8042500] C3 x C183 ---) [3217, 7611, 13805456] C183
66) [18133, 6817, 6064641] C3 x C183 44) [5569, 8203, 16319700] C3 x C183
67) [19213, 1166, 32481] C3 x C183 ---) [401, 583, 76852] C915
68) [19469, 161, 1613] C3 x C183 ---) [1613, 322, 19469] C183
69) [19949, 161, 1493] C3 x C183 ---) [1493, 322, 19949] C183
70) [20693, 433, 313] C3 x C183 ---) [313, 866, 186237] C183
71) [21737, 747, 134068] C3 x C183 ---) [277, 1494, 21737] C183
72) [32009, 727, 60112] C3 x C183 ---) [13, 369, 32009] C61
73) [33641, 1687, 501236] C3 x C183 ---) [149, 1841, 841025] C183
74) [46349, 3266, 998125] C3 x C183 20) [1597, 1633, 417141] C3 x C183
75) [47977, 499, 50256] C3 x C183 ---) [349, 998, 47977] C183
76) [47977, 243, 2768] C3 x C183 ---) [173, 486, 47977] C183
77) [52709, 962, 20525] C3 x C183 ---) [821, 481, 52709] C183
78) [65309, 305, 6929] C3 x C183 ---) [41, 610, 65309] C183
79) [71453, 1074, 2557] C3 x C183 ---) [2557, 537, 71453] C3 x C3 x C183
80) [72053, 285, 2293] C3 x C183 25) [2293, 570, 72053] C3 x C183
81) [72253, 289, 2817] C3 x C183 ---) [313, 578, 72253] C183
82) [104549, 325, 269] C3 x C183 ---) [269, 650, 104549] C183
83) [113021, 361, 4325] C3 x C183 ---) [173, 722, 113021] C183
84) [134513, 383, 3044] C3 x C183 14) [761, 766, 134513] C3 x C183
85) [151817, 899, 164096] C3 x C183 ---) [641, 1798, 151817] C183
86) [183569, 431, 548] C3 x C183 ---) [137, 862, 183569] C183
87) [185137, 3758, 568449] C3 x C183 19) [1289, 1879, 740548] C3 x C183
88) [290161, 575, 10116] C3 x C183 ---) [281, 1150, 290161] C183
89) [295441, 2363, 731200] C3 x C183 ---) [457, 4726, 2658969] C183
90) [321469, 769, 67473] C3 x C183 ---) [17, 1538, 321469] C183
91) [377873, 791, 61952] C3 x C183 ---) [8, 1582, 377873] C183
92) [453833, 771, 35152] C3 x C183 ---) [13, 1542, 453833] C183
93) [472477, 889, 79461] C3 x C183 ---) [109, 1778, 472477] C183
94) [547097, 763, 8768] C3 x C183 ---) [137, 1526, 547097] C183
95) [586057, 1091, 151056] C3 x C183 17) [1049, 2182, 586057] C3 x C183
96) [610193, 791, 3872] C3 x C183 ---) [8, 1582, 610193] C183
97) [631457, 815, 8192] C3 x C183 ---) [8, 1630, 631457] C183
98) [632257, 1183, 191808] C3 x C183 ---) [37, 2366, 632257] C183
99) [644129, 877, 31250] C3 x C183 ---) [8, 1754, 644129] C183
100) [662177, 815, 512] C3 x C183 ---) [8, 1630, 662177] C183
101) [678641, 871, 20000] C3 x C183 ---) [8, 1742, 678641] C183
102) [795737, 1627, 462848] C3 x C183 ---) [113, 3254, 795737] C183
103) [810757, 901, 261] C3 x C183 ---) [29, 1802, 810757] C183
104) [1308121, 1147, 1872] C3 x C183 ---) [13, 2294, 1308121] C183
105) [1594793, 1267, 2624] C3 x C183 ---) [41, 2534, 1594793] C183
106) [1670017, 1303, 6948] C3 x C183 ---) [193, 2606, 1670017] C183
107) [1859201, 1399, 24500] C3 x C183 ---) [5, 2798, 1859201] C183
108) [2169677, 1473, 13] C3 x C183 ---) [13, 2946, 2169677] C183
109) [2191529, 1523, 32000] C3 x C183 ---) [5, 3046, 2191529] C183
110) [2203169, 1487, 2000] C3 x C183 ---) [5, 2974, 2203169] C183
111) [2524681, 1891, 262800] C3 x C183 ---) [73, 3782, 2524681] C183
112) [3016921, 1739, 1800] C3 x C183 ---) [8, 3478, 3016921] C183
113) [3096217, 1979, 205056] C3 x C183 3) [89, 3958, 3096217] C3 x C183
114) [4218857, 2515, 526592] C3 x C183 ---) [17, 5030, 4218857] C183
115) [4267301, 2789, 877805] C3 x C183 ---) [5, 4177, 4267301] C183
116) [4327913, 2131, 53312] C3 x C183 ---) [17, 4262, 4327913] C183
117) [5482097, 2463, 146068] C3 x C183 2) [13, 4926, 5482097] C3 x C183
118) [6911189, 4237, 2760245] C3 x C183 ---) [5, 5281, 6911189] C183
119) [7289281, 2719, 25920] C3 x C183 1) [5, 5438, 7289281] C3 x C183