A quartic CM field field K is represented by invariants [D,A,B], where
K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real
quadratic subfield (hence A2-4B = m2D for some m).
Class number:
[Non-normal]
[Cyclic]
Class group C3 x C183 non-normal (D4) quartic CM field invariants: 119 fields
K |
Quartic invariants |
Cl(OK) |
Igusa invariants |
Kr |
Reflex invariants |
Cl(OKr) |
Igusa invariants |
1) |
[5, 5438, 7289281] |
C3 x C183 |
|
119) |
[7289281, 2719, 25920] |
C3 x C183 |
2) |
[13, 4926, 5482097] |
C3 x C183 |
|
117) |
[5482097, 2463, 146068] |
C3 x C183 |
3) |
[89, 3958, 3096217] |
C3 x C183 |
|
113) |
[3096217, 1979, 205056] |
C3 x C183 |
4) |
[181, 3061, 1417113] |
C3 x C183 |
|
---) |
[157457, 5163, 11584] |
C3 x C2013 |
5) |
[229, 426, 44453] |
C3 x C183 |
|
---) |
[44453, 213, 229] |
C183 |
6) |
[229, 2505, 47681] |
C3 x C183 |
|
---) |
[47681, 3311, 58624] |
C3 x C549 |
7) |
[229, 1353, 44021] |
C3 x C183 |
|
---) |
[44021, 2706, 1654525] |
C183 |
8) |
[229, 253, 3121] |
C3 x C183 |
|
---) |
[3121, 506, 51525] |
C915 |
9) |
[229, 721, 88225] |
C3 x C183 |
|
---) |
[3529, 631, 91600] |
C183 |
10) |
[257, 1890, 28477] |
C3 x C183 |
|
---) |
[28477, 945, 216137] |
C183 |
11) |
[281, 3094, 2321273] |
C3 x C183 |
|
---) |
[2321273, 1547, 17984] |
C3 x C3 x C183 |
12) |
[733, 265, 2713] |
C3 x C183 |
|
31) |
[2713, 530, 59373] |
C3 x C183 |
13) |
[733, 249, 6521] |
C3 x C183 |
|
---) |
[6521, 498, 35917] |
C183 |
14) |
[761, 766, 134513] |
C3 x C183 |
|
84) |
[134513, 383, 3044] |
C3 x C183 |
15) |
[761, 242, 11597] |
C3 x C183 |
|
---) |
[11597, 121, 761] |
C183 |
16) |
[761, 2703, 1566100] |
C3 x C183 |
|
61) |
[15661, 2645, 335601] |
C3 x C183 |
17) |
[1049, 2182, 586057] |
C3 x C183 |
|
95) |
[586057, 1091, 151056] |
C3 x C183 |
18) |
[1201, 1103, 236596] |
C3 x C183 |
|
---) |
[59149, 2206, 270225] |
C3 x C915 |
19) |
[1289, 1879, 740548] |
C3 x C183 |
|
87) |
[185137, 3758, 568449] |
C3 x C183 |
20) |
[1597, 1633, 417141] |
C3 x C183 |
|
74) |
[46349, 3266, 998125] |
C3 x C183 |
21) |
[1901, 2397, 101425] |
C3 x C183 |
|
---) |
[4057, 1719, 372596] |
C183 |
22) |
[1901, 2198, 112825] |
C3 x C183 |
|
---) |
[4513, 1099, 273744] |
C183 |
23) |
[2053, 570, 73013] |
C3 x C183 |
|
---) |
[73013, 285, 2053] |
C3 x C3 x C183 |
24) |
[2089, 1603, 491472] |
C3 x C183 |
|
---) |
[3413, 2397, 2089] |
C183 |
25) |
[2293, 570, 72053] |
C3 x C183 |
|
80) |
[72053, 285, 2293] |
C3 x C183 |
26) |
[2437, 469, 5641] |
C3 x C183 |
|
45) |
[5641, 938, 197397] |
C3 x C183 |
27) |
[2557, 1910, 748377] |
C3 x C183 |
|
---) |
[1697, 955, 40912] |
C183 |
28) |
[2677, 2949, 1531001] |
C3 x C183 |
|
---) |
[4241, 2159, 10708] |
C183 |
29) |
[2677, 3333, 1652213] |
C3 x C183 |
|
---) |
[5717, 2349, 966397] |
C183 |
30) |
[2677, 2358, 319241] |
C3 x C183 |
|
---) |
[1889, 1179, 267700] |
C183 |
31) |
[2713, 530, 59373] |
C3 x C183 |
|
12) |
[733, 265, 2713] |
C3 x C183 |
32) |
[2917, 3413, 17749] |
C3 x C183 |
|
---) |
[17749, 6826, 11577573] |
C183 |
33) |
[2917, 4354, 4447629] |
C3 x C183 |
|
---) |
[6101, 2177, 72925] |
C183 |
34) |
[3229, 2329, 929025] |
C3 x C183 |
|
---) |
[4129, 3439, 2906100] |
C183 |
35) |
[3413, 4173, 4352629] |
C3 x C183 |
|
---) |
[15061, 6333, 986357] |
C3 x C3 x C183 |
36) |
[4337, 6787, 2138164] |
C3 x C183 |
|
---) |
[10909, 3793, 975825] |
C3 x C915 |
37) |
[4457, 1847, 40564] |
C3 x C183 |
|
53) |
[10141, 3694, 3249153] |
C3 x C183 |
38) |
[4493, 2053, 863873] |
C3 x C183 |
|
---) |
[2393, 3079, 287552] |
C183 |
39) |
[4561, 4087, 2441572] |
C3 x C183 |
|
57) |
[12457, 7747, 14303296] |
C3 x C183 |
40) |
[4597, 3349, 2085669] |
C3 x C183 |
|
---) |
[2861, 2577, 1659517] |
C183 |
41) |
[5081, 3262, 1928497] |
C3 x C183 |
|
---) |
[6673, 1631, 182916] |
C183 |
42) |
[5261, 1546, 408133] |
C3 x C183 |
|
---) |
[3373, 773, 47349] |
C183 |
43) |
[5281, 167, 5652] |
C3 x C183 |
|
---) |
[157, 334, 5281] |
C183 |
44) |
[5569, 8203, 16319700] |
C3 x C183 |
|
66) |
[18133, 6817, 6064641] |
C3 x C183 |
45) |
[5641, 938, 197397] |
C3 x C183 |
|
26) |
[2437, 469, 5641] |
C3 x C183 |
46) |
[5821, 461, 16749] |
C3 x C183 |
|
---) |
[1861, 922, 145525] |
C183 |
47) |
[5821, 6001, 8233173] |
C3 x C183 |
|
---) |
[5413, 3049, 471501] |
C183 |
48) |
[6053, 2797, 1881653] |
C3 x C183 |
|
---) |
[3557, 3913, 732413] |
C183 |
49) |
[7673, 2203, 198548] |
C3 x C183 |
|
---) |
[1013, 2165, 928433] |
C183 |
50) |
[7753, 354, 317] |
C3 x C183 |
|
---) |
[317, 177, 7753] |
C183 |
51) |
[9413, 801, 101569] |
C3 x C183 |
|
---) |
[601, 1602, 235325] |
C183 |
52) |
[9833, 415, 20932] |
C3 x C183 |
|
---) |
[5233, 830, 88497] |
C183 |
53) |
[10141, 3694, 3249153] |
C3 x C183 |
|
37) |
[4457, 1847, 40564] |
C3 x C183 |
54) |
[10733, 161, 3797] |
C3 x C183 |
|
---) |
[3797, 322, 10733] |
C183 |
55) |
[12269, 129, 1093] |
C3 x C183 |
|
---) |
[1093, 258, 12269] |
C915 |
56) |
[12269, 737, 132725] |
C3 x C183 |
|
---) |
[5309, 1474, 12269] |
C183 |
57) |
[12457, 7747, 14303296] |
C3 x C183 |
|
39) |
[4561, 4087, 2441572] |
C3 x C183 |
58) |
[13577, 1259, 229952] |
C3 x C183 |
|
---) |
[3593, 2518, 665273] |
C183 |
59) |
[13877, 1665, 273277] |
C3 x C183 |
|
---) |
[757, 3330, 1679117] |
C183 |
60) |
[14389, 1453, 236425] |
C3 x C183 |
|
---) |
[193, 1003, 230224] |
C183 |
61) |
[15661, 2645, 335601] |
C3 x C183 |
|
16) |
[761, 2703, 1566100] |
C3 x C183 |
62) |
[15881, 7931, 9051200] |
C3 x C183 |
|
---) |
[5657, 6263, 63524] |
C183 |
63) |
[16673, 367, 29504] |
C3 x C183 |
|
---) |
[461, 734, 16673] |
C183 |
64) |
[17477, 2182, 71753] |
C3 x C183 |
|
---) |
[593, 1091, 279632] |
C183 |
65) |
[17609, 6207, 8042500] |
C3 x C183 |
|
---) |
[3217, 7611, 13805456] |
C183 |
66) |
[18133, 6817, 6064641] |
C3 x C183 |
|
44) |
[5569, 8203, 16319700] |
C3 x C183 |
67) |
[19213, 1166, 32481] |
C3 x C183 |
|
---) |
[401, 583, 76852] |
C915 |
68) |
[19469, 161, 1613] |
C3 x C183 |
|
---) |
[1613, 322, 19469] |
C183 |
69) |
[19949, 161, 1493] |
C3 x C183 |
|
---) |
[1493, 322, 19949] |
C183 |
70) |
[20693, 433, 313] |
C3 x C183 |
|
---) |
[313, 866, 186237] |
C183 |
71) |
[21737, 747, 134068] |
C3 x C183 |
|
---) |
[277, 1494, 21737] |
C183 |
72) |
[32009, 727, 60112] |
C3 x C183 |
|
---) |
[13, 369, 32009] |
C61 |
73) |
[33641, 1687, 501236] |
C3 x C183 |
|
---) |
[149, 1841, 841025] |
C183 |
74) |
[46349, 3266, 998125] |
C3 x C183 |
|
20) |
[1597, 1633, 417141] |
C3 x C183 |
75) |
[47977, 499, 50256] |
C3 x C183 |
|
---) |
[349, 998, 47977] |
C183 |
76) |
[47977, 243, 2768] |
C3 x C183 |
|
---) |
[173, 486, 47977] |
C183 |
77) |
[52709, 962, 20525] |
C3 x C183 |
|
---) |
[821, 481, 52709] |
C183 |
78) |
[65309, 305, 6929] |
C3 x C183 |
|
---) |
[41, 610, 65309] |
C183 |
79) |
[71453, 1074, 2557] |
C3 x C183 |
|
---) |
[2557, 537, 71453] |
C3 x C3 x C183 |
80) |
[72053, 285, 2293] |
C3 x C183 |
|
25) |
[2293, 570, 72053] |
C3 x C183 |
81) |
[72253, 289, 2817] |
C3 x C183 |
|
---) |
[313, 578, 72253] |
C183 |
82) |
[104549, 325, 269] |
C3 x C183 |
|
---) |
[269, 650, 104549] |
C183 |
83) |
[113021, 361, 4325] |
C3 x C183 |
|
---) |
[173, 722, 113021] |
C183 |
84) |
[134513, 383, 3044] |
C3 x C183 |
|
14) |
[761, 766, 134513] |
C3 x C183 |
85) |
[151817, 899, 164096] |
C3 x C183 |
|
---) |
[641, 1798, 151817] |
C183 |
86) |
[183569, 431, 548] |
C3 x C183 |
|
---) |
[137, 862, 183569] |
C183 |
87) |
[185137, 3758, 568449] |
C3 x C183 |
|
19) |
[1289, 1879, 740548] |
C3 x C183 |
88) |
[290161, 575, 10116] |
C3 x C183 |
|
---) |
[281, 1150, 290161] |
C183 |
89) |
[295441, 2363, 731200] |
C3 x C183 |
|
---) |
[457, 4726, 2658969] |
C183 |
90) |
[321469, 769, 67473] |
C3 x C183 |
|
---) |
[17, 1538, 321469] |
C183 |
91) |
[377873, 791, 61952] |
C3 x C183 |
|
---) |
[8, 1582, 377873] |
C183 |
92) |
[453833, 771, 35152] |
C3 x C183 |
|
---) |
[13, 1542, 453833] |
C183 |
93) |
[472477, 889, 79461] |
C3 x C183 |
|
---) |
[109, 1778, 472477] |
C183 |
94) |
[547097, 763, 8768] |
C3 x C183 |
|
---) |
[137, 1526, 547097] |
C183 |
95) |
[586057, 1091, 151056] |
C3 x C183 |
|
17) |
[1049, 2182, 586057] |
C3 x C183 |
96) |
[610193, 791, 3872] |
C3 x C183 |
|
---) |
[8, 1582, 610193] |
C183 |
97) |
[631457, 815, 8192] |
C3 x C183 |
|
---) |
[8, 1630, 631457] |
C183 |
98) |
[632257, 1183, 191808] |
C3 x C183 |
|
---) |
[37, 2366, 632257] |
C183 |
99) |
[644129, 877, 31250] |
C3 x C183 |
|
---) |
[8, 1754, 644129] |
C183 |
100) |
[662177, 815, 512] |
C3 x C183 |
|
---) |
[8, 1630, 662177] |
C183 |
101) |
[678641, 871, 20000] |
C3 x C183 |
|
---) |
[8, 1742, 678641] |
C183 |
102) |
[795737, 1627, 462848] |
C3 x C183 |
|
---) |
[113, 3254, 795737] |
C183 |
103) |
[810757, 901, 261] |
C3 x C183 |
|
---) |
[29, 1802, 810757] |
C183 |
104) |
[1308121, 1147, 1872] |
C3 x C183 |
|
---) |
[13, 2294, 1308121] |
C183 |
105) |
[1594793, 1267, 2624] |
C3 x C183 |
|
---) |
[41, 2534, 1594793] |
C183 |
106) |
[1670017, 1303, 6948] |
C3 x C183 |
|
---) |
[193, 2606, 1670017] |
C183 |
107) |
[1859201, 1399, 24500] |
C3 x C183 |
|
---) |
[5, 2798, 1859201] |
C183 |
108) |
[2169677, 1473, 13] |
C3 x C183 |
|
---) |
[13, 2946, 2169677] |
C183 |
109) |
[2191529, 1523, 32000] |
C3 x C183 |
|
---) |
[5, 3046, 2191529] |
C183 |
110) |
[2203169, 1487, 2000] |
C3 x C183 |
|
---) |
[5, 2974, 2203169] |
C183 |
111) |
[2524681, 1891, 262800] |
C3 x C183 |
|
---) |
[73, 3782, 2524681] |
C183 |
112) |
[3016921, 1739, 1800] |
C3 x C183 |
|
---) |
[8, 3478, 3016921] |
C183 |
113) |
[3096217, 1979, 205056] |
C3 x C183 |
|
3) |
[89, 3958, 3096217] |
C3 x C183 |
114) |
[4218857, 2515, 526592] |
C3 x C183 |
|
---) |
[17, 5030, 4218857] |
C183 |
115) |
[4267301, 2789, 877805] |
C3 x C183 |
|
---) |
[5, 4177, 4267301] |
C183 |
116) |
[4327913, 2131, 53312] |
C3 x C183 |
|
---) |
[17, 4262, 4327913] |
C183 |
117) |
[5482097, 2463, 146068] |
C3 x C183 |
|
2) |
[13, 4926, 5482097] |
C3 x C183 |
118) |
[6911189, 4237, 2760245] |
C3 x C183 |
|
---) |
[5, 5281, 6911189] |
C183 |
119) |
[7289281, 2719, 25920] |
C3 x C183 |
|
1) |
[5, 5438, 7289281] |
C3 x C183 |