Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C3 x C201 non-normal (D4) quartic CM field invariants: 105 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [8, 10610, 28142953] C3 x C201 105) [28142953, 5305, 18] C3 x C201
2) [8, 6350, 5362033] C3 x C201 102) [5362033, 3175, 1179648] C3 x C201
3) [41, 13190, 43452041] C3 x C201 ---) [43452041, 6595, 10496] C3 x C1005
4) [53, 3454, 2968961] C3 x C201 ---) [2968961, 1727, 3392] C3 x C3 x C201
5) [89, 5606, 7851113] C3 x C201 ---) [7851113, 2803, 1424] C3 x C3 x C201
6) [229, 742, 5737] C3 x C201 ---) [5737, 371, 32976] C201
7) [257, 306, 22381] C3 x C201 ---) [22381, 153, 257] C201
8) [257, 1619, 644432] C3 x C201 ---) [40277, 3238, 43433] C201
9) [257, 2274, 33469] C3 x C201 ---) [33469, 1137, 314825] C201
10) [733, 462, 6449] C3 x C201 ---) [6449, 231, 11728] C201
11) [1373, 1245, 98833] C3 x C201 ---) [2017, 1191, 87872] C201
12) [1889, 1882, 877925] C3 x C201 73) [35117, 941, 1889] C3 x C201
13) [2113, 3939, 62324] C3 x C201 59) [15581, 5009, 2030593] C3 x C201
14) [2213, 2873, 4889] C3 x C201 ---) [4889, 1883, 885200] C1005
15) [2477, 1670, 63113] C3 x C201 77) [63113, 835, 158528] C3 x C201
16) [2557, 3737, 1414369] C3 x C201 ---) [11689, 5543, 6392500] C201
17) [2677, 818, 156573] C3 x C201 ---) [1933, 409, 2677] C201
18) [2677, 169, 1117] C3 x C201 ---) [1117, 338, 24093] C201
19) [2801, 4063, 1347700] C3 x C201 55) [13477, 6213, 7868009] C3 x C201
20) [2857, 3267, 953408] C3 x C201 ---) [14897, 6534, 6859657] C201
21) [2917, 169, 577] C3 x C201 ---) [577, 338, 26253] C1407
22) [3209, 4831, 1078100] C3 x C201 51) [10781, 4429, 3931025] C3 x C201
23) [3221, 1598, 174577] C3 x C201 ---) [1033, 799, 115956] C201
24) [3221, 117, 2617] C3 x C201 ---) [2617, 234, 3221] C201
25) [3469, 1041, 228425] C3 x C201 46) [9137, 2082, 169981] C3 x C201
26) [3877, 2001, 651101] C3 x C201 ---) [5381, 4002, 1399597] C201
27) [3889, 1003, 242752] C3 x C201 ---) [3793, 2006, 35001] C201
28) [4493, 1145, 3137] C3 x C201 ---) [3137, 2290, 1298477] C3 x C603
29) [4813, 8085, 15907433] C3 x C201 ---) [16553, 5655, 2329492] C3 x C3 x C201
30) [4933, 5293, 431973] C3 x C201 37) [5333, 3873, 4933] C3 x C201
31) [4933, 985, 34137] C3 x C201 ---) [3793, 1970, 833677] C201
32) [4937, 4538, 705061] C3 x C201 ---) [14389, 2269, 1110825] C3 x C3 x C201
33) [5297, 4771, 1080896] C3 x C201 ---) [16889, 9542, 18438857] C201
34) [5297, 259, 4852] C3 x C201 ---) [1213, 518, 47673] C201
35) [5297, 1819, 603392] C3 x C201 ---) [2357, 3433, 895193] C201
36) [5333, 890, 6037] C3 x C201 ---) [6037, 445, 47997] C201
37) [5333, 3873, 4933] C3 x C201 30) [4933, 5293, 431973] C3 x C201
38) [5573, 4337, 788753] C3 x C201 60) [16097, 8674, 15654557] C3 x C201
39) [5741, 4085, 140189] C3 x C201 ---) [2861, 2137, 694661] C201
40) [5821, 750, 47489] C3 x C201 ---) [281, 375, 23284] C201
41) [6053, 3497, 1954093] C3 x C201 ---) [5413, 5285, 6591717] C201
42) [6053, 3258, 1467253] C3 x C201 ---) [5077, 1629, 296597] C201
43) [7537, 2039, 615424] C3 x C201 ---) [601, 1391, 482368] C201
44) [7753, 367, 16228] C3 x C201 ---) [4057, 734, 69777] C201
45) [8597, 6537, 2685733] C3 x C201 ---) [5077, 6165, 3103517] C201
46) [9137, 2082, 169981] C3 x C201 25) [3469, 1041, 228425] C3 x C201
47) [9293, 517, 45913] C3 x C201 ---) [937, 1034, 83637] C201
48) [10301, 942, 57025] C3 x C201 ---) [2281, 471, 41204] C201
49) [10301, 1601, 638225] C3 x C201 ---) [521, 1715, 41204] C201
50) [10733, 4249, 2957] C3 x C201 ---) [2957, 3905, 3101837] C201
51) [10781, 4429, 3931025] C3 x C201 22) [3209, 4831, 1078100] C3 x C201
52) [11197, 2154, 40229] C3 x C201 ---) [821, 1077, 279925] C201
53) [12197, 3209, 2546977] C3 x C201 ---) [1153, 2459, 439092] C201
54) [12401, 1850, 806021] C3 x C201 ---) [2789, 925, 12401] C201
55) [13477, 6213, 7868009] C3 x C201 19) [2801, 4063, 1347700] C3 x C201
56) [13577, 746, 84821] C3 x C201 ---) [701, 373, 13577] C201
57) [15193, 1706, 180661] C3 x C201 ---) [1069, 853, 136737] C201
58) [15193, 8694, 17924057] C3 x C201 ---) [4817, 4347, 243088] C201
59) [15581, 5009, 2030593] C3 x C201 13) [2113, 3939, 62324] C3 x C201
60) [16097, 8674, 15654557] C3 x C201 38) [5573, 4337, 788753] C3 x C201
61) [16477, 3209, 1647589] C3 x C201 ---) [5701, 6418, 3707325] C201
62) [16481, 5650, 3821] C3 x C201 ---) [3821, 2825, 1994201] C201
63) [16553, 1679, 204032] C3 x C201 ---) [797, 3358, 2002913] C201
64) [17609, 5879, 500900] C3 x C201 ---) [5009, 9335, 3451364] C201
65) [18701, 5914, 6873749] C3 x C201 ---) [5021, 2957, 467525] C201
66) [22397, 185, 2957] C3 x C201 ---) [2957, 370, 22397] C201
67) [23297, 2667, 1073488] C3 x C201 ---) [397, 2357, 209673] C201
68) [24281, 762, 48037] C3 x C201 ---) [397, 381, 24281] C201
69) [26113, 2067, 904916] C3 x C201 ---) [269, 1849, 26113] C201
70) [27617, 231, 6436] C3 x C201 ---) [1609, 462, 27617] C201
71) [29629, 517, 157] C3 x C201 ---) [157, 1034, 266661] C201
72) [31121, 2194, 83053] C3 x C201 ---) [157, 1097, 280089] C201
73) [35117, 941, 1889] C3 x C201 12) [1889, 1882, 877925] C3 x C201
74) [39157, 826, 13941] C3 x C201 ---) [1549, 413, 39157] C201
75) [42709, 1297, 153621] C3 x C201 ---) [101, 1885, 42709] C201
76) [53633, 1854, 1201] C3 x C201 ---) [1201, 927, 214532] C201
77) [63113, 835, 158528] C3 x C201 15) [2477, 1670, 63113] C3 x C201
78) [85517, 1258, 53573] C3 x C201 ---) [317, 629, 85517] C201
79) [101273, 827, 145664] C3 x C201 ---) [569, 1654, 101273] C201
80) [111121, 1506, 122525] C3 x C201 ---) [29, 753, 111121] C201
81) [113417, 2814, 164977] C3 x C201 ---) [457, 1407, 453668] C201
82) [158233, 403, 1044] C3 x C201 ---) [29, 806, 158233] C201
83) [185441, 975, 191296] C3 x C201 ---) [61, 1950, 185441] C201
84) [194581, 541, 24525] C3 x C201 ---) [109, 1082, 194581] C201
85) [209317, 2098, 263133] C3 x C201 ---) [173, 1049, 209317] C201
86) [218797, 481, 3141] C3 x C201 ---) [349, 962, 218797] C201
87) [254437, 733, 70713] C3 x C201 ---) [97, 1466, 254437] C201
88) [283501, 649, 34425] C3 x C201 ---) [17, 1298, 283501] C201
89) [299701, 549, 425] C3 x C201 ---) [17, 1098, 299701] C201
90) [373453, 625, 4293] C3 x C201 ---) [53, 1250, 373453] C201
91) [376097, 2195, 358288] C3 x C201 ---) [457, 4390, 3384873] C201
92) [550757, 845, 40817] C3 x C201 ---) [17, 1690, 550757] C201
93) [999529, 1651, 431568] C3 x C201 ---) [37, 3302, 999529] C201
94) [1484137, 1475, 172872] C3 x C201 ---) [8, 2950, 1484137] C201
95) [1754617, 1483, 111168] C3 x C201 ---) [193, 2966, 1754617] C201
96) [2897689, 1883, 162000] C3 x C201 ---) [5, 3766, 2897689] C201
97) [3045457, 2647, 990288] C3 x C201 ---) [13, 5294, 3045457] C201
98) [3078661, 2421, 695645] C3 x C201 ---) [5, 3533, 3078661] C201
99) [3467833, 1985, 118098] C3 x C201 ---) [8, 3970, 3467833] C201
100) [3843221, 2621, 756605] C3 x C201 ---) [5, 3973, 3843221] C201
101) [4487449, 2171, 56448] C3 x C201 ---) [8, 4342, 4487449] C201
102) [5362033, 3175, 1179648] C3 x C201 2) [8, 6350, 5362033] C3 x C201
103) [5502949, 3973, 2570445] C3 x C201 ---) [5, 4749, 5502949] C201
104) [13703897, 3803, 189728] C3 x C201 ---) [8, 7606, 13703897] C201
105) [28142953, 5305, 18] C3 x C201 1) [8, 10610, 28142953] C3 x C201