Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C3 x C27 non-normal (D4) quartic CM field invariants: 227 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 949, 218849] C3 x C27 207) [218849, 623, 42320] C3 x C27
2) [5, 2074, 944149] C3 x C27 219) [944149, 1037, 32805] C3 x C27
3) [5, 2441, 1357589] C3 x C27 224) [1357589, 2237, 911645] C3 x C27
4) [5, 1981, 979189] C3 x C27 221) [979189, 1437, 271445] C3 x C27
5) [5, 1869, 774589] C3 x C27 216) [774589, 1753, 574605] C3 x C27
6) [5, 2329, 1319509] C3 x C27 223) [1319509, 1533, 257645] C3 x C27
7) [5, 894, 199489] C3 x C27 205) [199489, 447, 80] C3 x C27
8) [5, 2089, 965369] C3 x C27 220) [965369, 1963, 722000] C3 x C27
9) [5, 2326, 1323689] C3 x C27 ---) [1323689, 1163, 7220] C3 x C9 x C27
10) [5, 1481, 483929] C3 x C27 211) [483929, 827, 50000] C3 x C27
11) [5, 1774, 763649] C3 x C27 215) [763649, 887, 5780] C3 x C27
12) [5, 958, 197441] C3 x C27 203) [197441, 479, 8000] C3 x C27
13) [8, 1766, 508841] C3 x C27 213) [508841, 883, 67712] C3 x C27
14) [8, 782, 137393] C3 x C27 195) [137393, 391, 3872] C3 x C27
15) [8, 2838, 1163353] C3 x C27 222) [1163353, 1419, 212552] C3 x C27
16) [8, 910, 139313] C3 x C27 ---) [139313, 455, 16928] C3 x C3 x C27
17) [8, 2134, 1111577] C3 x C27 ---) [1111577, 1067, 6728] C3 x C9 x C27
18) [8, 3778, 1998329] C3 x C27 ---) [1998329, 1889, 392498] C3 x C783
19) [8, 2402, 1162649] C3 x C27 ---) [1162649, 1201, 69938] C3 x C3 x C27
20) [8, 782, 150833] C3 x C27 ---) [150833, 391, 512] C3 x C3 x C27
21) [8, 3158, 2436793] C3 x C27 227) [2436793, 1579, 14112] C3 x C27
22) [8, 1426, 508297] C3 x C27 212) [508297, 713, 18] C3 x C27
23) [8, 3254, 2106329] C3 x C27 226) [2106329, 1627, 135200] C3 x C27
24) [13, 757, 98773] C3 x C27 182) [98773, 941, 196677] C3 x C27
25) [13, 717, 56369] C3 x C27 169) [56369, 519, 53248] C3 x C27
26) [13, 1745, 721213] C3 x C27 214) [721213, 2693, 190333] C3 x C27
27) [13, 1970, 891133] C3 x C27 217) [891133, 985, 19773] C3 x C27
28) [13, 2165, 432337] C3 x C27 210) [432337, 1303, 316368] C3 x C27
29) [13, 1134, 108497] C3 x C27 ---) [108497, 567, 53248] C3 x C3 x C27
30) [13, 1206, 150617] C3 x C27 ---) [150617, 603, 53248] C3 x C3 x C27
31) [17, 2614, 1393817] C3 x C27 225) [1393817, 1307, 78608] C3 x C27
32) [17, 2630, 1450697] C3 x C27 ---) [1450697, 1315, 69632] C3 x C459
33) [17, 874, 133781] C3 x C27 194) [133781, 437, 14297] C3 x C27
34) [17, 2198, 1206713] C3 x C27 ---) [1206713, 1099, 272] C3 x C459
35) [17, 1934, 928289] C3 x C27 218) [928289, 967, 1700] C3 x C27
36) [29, 757, 33577] C3 x C27 154) [33577, 651, 97556] C3 x C27
37) [37, 633, 87509] C3 x C27 179) [87509, 1266, 50653] C3 x C27
38) [61, 1121, 198733] C3 x C27 204) [198733, 2242, 461709] C3 x C27
39) [61, 969, 40013] C3 x C27 161) [40013, 1261, 307501] C3 x C27
40) [61, 2362, 1365237] C3 x C27 197) [151693, 1181, 7381] C3 x C27
41) [73, 2062, 1061793] C3 x C27 190) [117977, 1031, 292] C3 x C27
42) [73, 1586, 37549] C3 x C27 159) [37549, 793, 147825] C3 x C27
43) [73, 890, 162693] C3 x C27 146) [18077, 445, 8833] C3 x C27
44) [89, 847, 179152] C3 x C27 ---) [11197, 661, 39249] C3 x C3 x C27
45) [89, 902, 180617] C3 x C27 201) [180617, 451, 5696] C3 x C27
46) [97, 975, 214352] C3 x C27 139) [13397, 933, 214273] C3 x C27
47) [97, 1114, 309861] C3 x C27 157) [34429, 557, 97] C3 x C27
48) [101, 470, 48761] C3 x C27 166) [48761, 235, 1616] C3 x C27
49) [109, 446, 34033] C3 x C27 156) [34033, 223, 3924] C3 x C27
50) [109, 1693, 404577] C3 x C27 163) [44953, 1531, 35316] C3 x C27
51) [113, 955, 217808] C3 x C27 140) [13613, 817, 113] C3 x C27
52) [113, 539, 71924] C3 x C27 145) [17981, 1078, 2825] C3 x C27
53) [149, 809, 25013] C3 x C27 151) [25013, 1618, 554429] C3 x C27
54) [173, 589, 33749] C3 x C27 155) [33749, 1178, 211925] C3 x C27
55) [181, 1201, 157473] C3 x C27 144) [17497, 1459, 527796] C3 x C27
56) [197, 262, 14009] C3 x C27 ---) [14009, 131, 788] C3 x C297
57) [229, 1178, 272725] C3 x C27 ---) [10909, 589, 18549] C135
58) [229, 361, 31149] C3 x C27 ---) [3461, 722, 5725] C27
59) [229, 430, 42561] C3 x C27 120) [4729, 215, 916] C3 x C27
60) [229, 594, 43325] C3 x C27 ---) [1733, 297, 11221] C27
61) [229, 269, 5209] C3 x C27 ---) [5209, 538, 51525] C27
62) [229, 101, 2493] C3 x C27 ---) [277, 202, 229] C27
63) [233, 695, 41012] C3 x C27 137) [10253, 1390, 318977] C3 x C27
64) [241, 2527, 1538532] C3 x C27 162) [42737, 2923, 2039824] C3 x C27
65) [241, 2623, 1719972] C3 x C27 164) [47777, 2431, 509956] C3 x C27
66) [257, 174, 3457] C3 x C27 ---) [3457, 87, 1028] C27
67) [257, 371, 11216] C3 x C27 ---) [701, 293, 257] C27
68) [277, 482, 48109] C3 x C27 165) [48109, 241, 2493] C3 x C27
69) [293, 505, 10357] C3 x C27 ---) [10357, 1010, 213597] C3 x C189
70) [317, 1433, 18773] C3 x C27 ---) [18773, 2117, 890453] C3 x C135
71) [349, 1229, 376825] C3 x C27 141) [15073, 2458, 3141] C3 x C27
72) [389, 797, 150925] C3 x C27 128) [6037, 1481, 3501] C3 x C27
73) [461, 1082, 202325] C3 x C27 134) [8093, 541, 22589] C3 x C27
74) [509, 781, 59725] C3 x C27 105) [2389, 861, 12725] C3 x C27
75) [509, 2653, 461525] C3 x C27 147) [18461, 1945, 941141] C3 x C27
76) [569, 727, 130852] C3 x C27 153) [32713, 1454, 5121] C3 x C27
77) [733, 697, 6921] C3 x C27 ---) [769, 619, 26388] C27
78) [733, 169, 6957] C3 x C27 ---) [773, 338, 733] C27
79) [757, 902, 154953] C3 x C27 98) [1913, 451, 12112] C3 x C27
80) [761, 1903, 644900] C3 x C27 ---) [6449, 1883, 304400] C27
81) [773, 202, 7109] C3 x C27 129) [7109, 101, 773] C3 x C27
82) [809, 1415, 126596] C3 x C27 152) [31649, 2830, 1495841] C3 x C27
83) [829, 777, 150725] C3 x C27 127) [6029, 1554, 829] C3 x C27
84) [977, 455, 31972] C3 x C27 133) [7993, 910, 79137] C3 x C27
85) [1013, 2281, 990509] C3 x C27 125) [5861, 1489, 25325] C3 x C27
86) [1061, 829, 6029] C3 x C27 126) [6029, 1658, 663125] C3 x C27
87) [1097, 323, 25808] C3 x C27 93) [1613, 646, 1097] C3 x C27
88) [1153, 1454, 67329] C3 x C27 ---) [7481, 727, 115300] C3 x C3 x C27
89) [1229, 706, 1709] C3 x C27 ---) [1709, 353, 30725] C27
90) [1229, 569, 11809] C3 x C27 ---) [241, 291, 19664] C27
91) [1237, 521, 15597] C3 x C27 97) [1733, 1042, 209053] C3 x C27
92) [1597, 717, 80213] C3 x C27 94) [1637, 1434, 193237] C3 x C27
93) [1613, 646, 1097] C3 x C27 87) [1097, 323, 25808] C3 x C27
94) [1637, 1434, 193237] C3 x C27 92) [1597, 717, 80213] C3 x C27
95) [1721, 1723, 645376] C3 x C27 106) [2521, 1827, 440576] C3 x C27
96) [1733, 1906, 901277] C3 x C27 ---) [5333, 953, 1733] C3 x C3 x C27
97) [1733, 1042, 209053] C3 x C27 91) [1237, 521, 15597] C3 x C27
98) [1913, 451, 12112] C3 x C27 79) [757, 902, 154953] C3 x C27
99) [1913, 615, 13732] C3 x C27 116) [3433, 1230, 323297] C3 x C27
100) [2089, 179, 7488] C3 x C27 ---) [13, 97, 2089] C27
101) [2089, 599, 76644] C3 x C27 ---) [2129, 1198, 52225] C27
102) [2213, 53, 149] C3 x C27 ---) [149, 106, 2213] C27
103) [2297, 1859, 560192] C3 x C27 135) [8753, 3718, 1215113] C3 x C27
104) [2309, 281, 5309] C3 x C27 122) [5309, 562, 57725] C3 x C27
105) [2389, 861, 12725] C3 x C27 74) [509, 781, 59725] C3 x C27
106) [2521, 1827, 440576] C3 x C27 95) [1721, 1723, 645376] C3 x C27
107) [2557, 89, 1341] C3 x C27 ---) [149, 178, 2557] C27
108) [2557, 641, 50941] C3 x C27 ---) [421, 1129, 23013] C27
109) [2689, 2806, 1280025] C3 x C27 123) [5689, 1403, 172096] C3 x C27
110) [2693, 773, 148709] C3 x C27 ---) [1229, 1546, 2693] C3 x C3 x C27
111) [2777, 695, 3428] C3 x C27 ---) [857, 1390, 469313] C27
112) [2917, 650, 613] C3 x C27 ---) [613, 325, 26253] C27
113) [3109, 1093, 260577] C3 x C27 114) [3217, 2186, 152341] C3 x C27
114) [3217, 2186, 152341] C3 x C27 113) [3109, 1093, 260577] C3 x C27
115) [3229, 181, 925] C3 x C27 ---) [37, 341, 29061] C27
116) [3433, 1230, 323297] C3 x C27 99) [1913, 615, 13732] C3 x C27
117) [3889, 71, 288] C3 x C27 ---) [8, 142, 3889] C27
118) [4001, 767, 66052] C3 x C27 ---) [337, 887, 144036] C27
119) [4349, 1850, 3221] C3 x C27 ---) [3221, 925, 213101] C3 x C3 x C27
120) [4729, 215, 916] C3 x C27 59) [229, 430, 42561] C3 x C27
121) [4729, 787, 96912] C3 x C27 ---) [673, 1574, 231721] C27
122) [5309, 562, 57725] C3 x C27 104) [2309, 281, 5309] C3 x C27
123) [5689, 1403, 172096] C3 x C27 109) [2689, 2806, 1280025] C3 x C27
124) [5821, 229, 13] C3 x C27 ---) [13, 181, 5821] C27
125) [5861, 1489, 25325] C3 x C27 85) [1013, 2281, 990509] C3 x C27
126) [6029, 1658, 663125] C3 x C27 86) [1061, 829, 6029] C3 x C27
127) [6029, 1554, 829] C3 x C27 83) [829, 777, 150725] C3 x C27
128) [6037, 1481, 3501] C3 x C27 72) [389, 797, 150925] C3 x C27
129) [7109, 101, 773] C3 x C27 81) [773, 202, 7109] C3 x C27
130) [7673, 830, 49457] C3 x C27 ---) [137, 415, 30692] C27
131) [7673, 287, 3328] C3 x C27 ---) [13, 177, 7673] C27
132) [7753, 1606, 148617] C3 x C27 ---) [337, 803, 124048] C27
133) [7993, 910, 79137] C3 x C27 84) [977, 455, 31972] C3 x C27
134) [8093, 541, 22589] C3 x C27 73) [461, 1082, 202325] C3 x C27
135) [8753, 3718, 1215113] C3 x C27 103) [2297, 1859, 560192] C3 x C27
136) [9241, 359, 11428] C3 x C27 ---) [2857, 718, 83169] C3 x C3 x C27
137) [10253, 1390, 318977] C3 x C27 63) [233, 695, 41012] C3 x C27
138) [11821, 461, 26533] C3 x C27 ---) [157, 922, 106389] C27
139) [13397, 933, 214273] C3 x C27 46) [97, 975, 214352] C3 x C27
140) [13613, 817, 113] C3 x C27 51) [113, 955, 217808] C3 x C27
141) [15073, 2458, 3141] C3 x C27 71) [349, 1229, 376825] C3 x C27
142) [15361, 3047, 1456996] C3 x C27 ---) [1009, 2995, 2211984] C3 x C189
143) [15737, 395, 35072] C3 x C27 ---) [137, 790, 15737] C27
144) [17497, 1459, 527796] C3 x C27 55) [181, 1201, 157473] C3 x C27
145) [17981, 1078, 2825] C3 x C27 52) [113, 539, 71924] C3 x C27
146) [18077, 445, 8833] C3 x C27 43) [73, 890, 162693] C3 x C27
147) [18461, 1945, 941141] C3 x C27 75) [509, 2653, 461525] C3 x C27
148) [22717, 869, 137677] C3 x C27 ---) [37, 641, 22717] C27
149) [22717, 361, 26901] C3 x C27 ---) [61, 722, 22717] C27
150) [23689, 623, 43732] C3 x C27 ---) [13, 317, 23689] C27
151) [25013, 1618, 554429] C3 x C27 53) [149, 809, 25013] C3 x C27
152) [31649, 2830, 1495841] C3 x C27 82) [809, 1415, 126596] C3 x C27
153) [32713, 1454, 5121] C3 x C27 76) [569, 727, 130852] C3 x C27
154) [33577, 651, 97556] C3 x C27 36) [29, 757, 33577] C3 x C27
155) [33749, 1178, 211925] C3 x C27 54) [173, 589, 33749] C3 x C27
156) [34033, 223, 3924] C3 x C27 49) [109, 446, 34033] C3 x C27
157) [34429, 557, 97] C3 x C27 47) [97, 1114, 309861] C3 x C27
158) [37489, 767, 137700] C3 x C27 ---) [17, 791, 149956] C27
159) [37549, 793, 147825] C3 x C27 42) [73, 1586, 37549] C3 x C27
160) [38921, 1123, 305552] C3 x C27 ---) [113, 2119, 155684] C27
161) [40013, 1261, 307501] C3 x C27 39) [61, 969, 40013] C3 x C27
162) [42737, 2923, 2039824] C3 x C27 64) [241, 2527, 1538532] C3 x C27
163) [44953, 1531, 35316] C3 x C27 50) [109, 1693, 404577] C3 x C27
164) [47777, 2431, 509956] C3 x C27 65) [241, 2623, 1719972] C3 x C27
165) [48109, 241, 2493] C3 x C27 68) [277, 482, 48109] C3 x C27
166) [48761, 235, 1616] C3 x C27 48) [101, 470, 48761] C3 x C27
167) [54409, 803, 147600] C3 x C27 ---) [41, 1606, 54409] C27
168) [55901, 361, 18605] C3 x C27 ---) [5, 473, 55901] C27
169) [56369, 519, 53248] C3 x C27 25) [13, 717, 56369] C3 x C27
170) [57241, 827, 156672] C3 x C27 ---) [17, 959, 228964] C27
171) [58537, 243, 128] C3 x C27 ---) [8, 486, 58537] C27
172) [64489, 363, 16820] C3 x C27 ---) [5, 509, 64489] C27
173) [65033, 259, 512] C3 x C27 ---) [8, 518, 65033] C27
174) [66749, 457, 35525] C3 x C27 ---) [29, 914, 66749] C27
175) [81049, 369, 13778] C3 x C27 ---) [8, 738, 81049] C27
176) [81629, 473, 35525] C3 x C27 ---) [29, 946, 81629] C27
177) [86441, 371, 12800] C3 x C27 ---) [8, 742, 86441] C27
178) [87041, 407, 19652] C3 x C27 ---) [17, 814, 87041] C27
179) [87509, 1266, 50653] C3 x C27 37) [37, 633, 87509] C3 x C27
180) [92861, 409, 18605] C3 x C27 ---) [5, 617, 92861] C27
181) [94109, 377, 12005] C3 x C27 ---) [5, 641, 94109] C27
182) [98773, 941, 196677] C3 x C27 24) [13, 757, 98773] C3 x C27
183) [99817, 345, 4802] C3 x C27 ---) [8, 690, 99817] C27
184) [100069, 357, 6845] C3 x C27 ---) [5, 701, 100069] C27
185) [100469, 317, 5] C3 x C27 ---) [5, 634, 100469] C27
186) [101833, 419, 18432] C3 x C27 ---) [8, 838, 101833] C27
187) [103769, 337, 2450] C3 x C27 ---) [8, 674, 103769] C27
188) [113149, 1253, 137917] C3 x C27 ---) [13, 677, 113149] C27
189) [116789, 1418, 35525] C3 x C27 ---) [29, 709, 116789] C27
190) [117977, 1031, 292] C3 x C27 41) [73, 2062, 1061793] C3 x C27
191) [119701, 397, 9477] C3 x C27 ---) [13, 794, 119701] C27
192) [121229, 353, 845] C3 x C27 ---) [5, 706, 121229] C27
193) [122929, 351, 68] C3 x C27 ---) [17, 702, 122929] C27
194) [133781, 437, 14297] C3 x C27 33) [17, 874, 133781] C3 x C27
195) [137393, 391, 3872] C3 x C27 14) [8, 782, 137393] C3 x C27
196) [144629, 557, 41405] C3 x C27 ---) [5, 761, 144629] C27
197) [151693, 1181, 7381] C3 x C27 40) [61, 2362, 1365237] C3 x C27
198) [164249, 491, 19208] C3 x C27 ---) [8, 982, 164249] C27
199) [171253, 1549, 557037] C3 x C27 ---) [13, 893, 171253] C27
200) [176389, 437, 3645] C3 x C27 ---) [5, 874, 176389] C27
201) [180617, 451, 5696] C3 x C27 45) [89, 902, 180617] C3 x C27
202) [185189, 437, 1445] C3 x C27 ---) [5, 874, 185189] C27
203) [197441, 479, 8000] C3 x C27 12) [5, 958, 197441] C3 x C27
204) [198733, 2242, 461709] C3 x C27 38) [61, 1121, 198733] C3 x C27
205) [199489, 447, 80] C3 x C27 7) [5, 894, 199489] C3 x C27
206) [200201, 451, 800] C3 x C27 ---) [8, 902, 200201] C27
207) [218849, 623, 42320] C3 x C27 1) [5, 949, 218849] C3 x C27
208) [301349, 613, 18605] C3 x C27 ---) [5, 1226, 301349] C27
209) [378269, 617, 605] C3 x C27 ---) [5, 1234, 378269] C27
210) [432337, 1303, 316368] C3 x C27 28) [13, 2165, 432337] C3 x C27
211) [483929, 827, 50000] C3 x C27 10) [5, 1481, 483929] C3 x C27
212) [508297, 713, 18] C3 x C27 22) [8, 1426, 508297] C3 x C27
213) [508841, 883, 67712] C3 x C27 13) [8, 1766, 508841] C3 x C27
214) [721213, 2693, 190333] C3 x C27 26) [13, 1745, 721213] C3 x C27
215) [763649, 887, 5780] C3 x C27 11) [5, 1774, 763649] C3 x C27
216) [774589, 1753, 574605] C3 x C27 5) [5, 1869, 774589] C3 x C27
217) [891133, 985, 19773] C3 x C27 27) [13, 1970, 891133] C3 x C27
218) [928289, 967, 1700] C3 x C27 35) [17, 1934, 928289] C3 x C27
219) [944149, 1037, 32805] C3 x C27 2) [5, 2074, 944149] C3 x C27
220) [965369, 1963, 722000] C3 x C27 8) [5, 2089, 965369] C3 x C27
221) [979189, 1437, 271445] C3 x C27 4) [5, 1981, 979189] C3 x C27
222) [1163353, 1419, 212552] C3 x C27 15) [8, 2838, 1163353] C3 x C27
223) [1319509, 1533, 257645] C3 x C27 6) [5, 2329, 1319509] C3 x C27
224) [1357589, 2237, 911645] C3 x C27 3) [5, 2441, 1357589] C3 x C27
225) [1393817, 1307, 78608] C3 x C27 31) [17, 2614, 1393817] C3 x C27
226) [2106329, 1627, 135200] C3 x C27 23) [8, 3254, 2106329] C3 x C27
227) [2436793, 1579, 14112] C3 x C27 21) [8, 3158, 2436793] C3 x C27