A quartic CM field field K is represented by invariants [D,A,B], where
K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real
quadratic subfield (hence A2-4B = m2D for some m).
Class number:
[Non-normal]
[Cyclic]
Class group C3 x C3 non-normal (D4) quartic CM field invariants: 23 fields
K |
Quartic invariants |
Cl(OK) |
Igusa invariants |
Kr |
Reflex invariants |
Cl(OKr) |
Igusa invariants |
1) |
[5, 349, 26669] |
C3 x C3 |
■ |
23) |
[26669, 193, 2645] |
C3 x C3 |
■ |
2) |
[5, 229, 11909] |
C3 x C3 |
■ |
21) |
[11909, 133, 1445] |
C3 x C3 |
■ |
3) |
[5, 274, 18749] |
C3 x C3 |
■ |
22) |
[18749, 137, 5] |
C3 x C3 |
■ |
4) |
[8, 326, 20297] |
C3 x C3 |
■ |
---) |
[20297, 163, 1568] |
C3 x C3 x C3 |
■ |
5) |
[13, 233, 8629] |
C3 x C3 |
■ |
19) |
[8629, 281, 325] |
C3 x C3 |
■ |
6) |
[17, 190, 8753] |
C3 x C3 |
■ |
20) |
[8753, 95, 68] |
C3 x C3 |
■ |
7) |
[89, 383, 6212] |
C3 x C3 |
■ |
13) |
[1553, 211, 1424] |
C3 x C3 |
■ |
8) |
[97, 731, 122896] |
C3 x C3 |
■ |
18) |
[7681, 611, 76048] |
C3 x C3 |
■ |
9) |
[113, 343, 14468] |
C3 x C3 |
■ |
17) |
[3617, 667, 1808] |
C3 x C3 |
■ |
10) |
[193, 239, 10372] |
C3 x C3 |
■ |
15) |
[2593, 478, 15633] |
C3 x C3 |
■ |
11) |
[733, 154, 2997] |
C3 x C3 |
■ |
---) |
[37, 77, 733] |
C3 |
■ |
12) |
[761, 43, 272] |
C3 x C3 |
■ |
---) |
[17, 86, 761] |
C3 |
■ |
13) |
[1553, 211, 1424] |
C3 x C3 |
■ |
7) |
[89, 383, 6212] |
C3 x C3 |
■ |
14) |
[1901, 49, 125] |
C3 x C3 |
■ |
---) |
[5, 97, 1901] |
C3 |
■ |
15) |
[2593, 478, 15633] |
C3 x C3 |
■ |
10) |
[193, 239, 10372] |
C3 x C3 |
■ |
16) |
[2857, 57, 98] |
C3 x C3 |
■ |
---) |
[8, 114, 2857] |
C3 |
■ |
17) |
[3617, 667, 1808] |
C3 x C3 |
■ |
9) |
[113, 343, 14468] |
C3 x C3 |
■ |
18) |
[7681, 611, 76048] |
C3 x C3 |
■ |
8) |
[97, 731, 122896] |
C3 x C3 |
■ |
19) |
[8629, 281, 325] |
C3 x C3 |
■ |
5) |
[13, 233, 8629] |
C3 x C3 |
■ |
20) |
[8753, 95, 68] |
C3 x C3 |
■ |
6) |
[17, 190, 8753] |
C3 x C3 |
■ |
21) |
[11909, 133, 1445] |
C3 x C3 |
■ |
2) |
[5, 229, 11909] |
C3 x C3 |
■ |
22) |
[18749, 137, 5] |
C3 x C3 |
■ |
3) |
[5, 274, 18749] |
C3 x C3 |
■ |
23) |
[26669, 193, 2645] |
C3 x C3 |
■ |
1) |
[5, 349, 26669] |
C3 x C3 |
■ |