Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C3 x C3 x C108 non-normal (D4) quartic CM field invariants: 50 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [229, 870, 130601] C3 x C3 x C108 ---) [130601, 435, 14656] C3 x C216
2) [316, 696, 120788] C3 x C3 x C108 ---) [30197, 348, 79] C3 x C108
3) [316, 1278, 21221] C3 x C3 x C108 ---) [21221, 639, 96775] C3 x C108
4) [1101, 311, 17299] C3 x C3 x C108 ---) [69196, 622, 27525] C3 x C6 x C54
5) [1436, 844, 4328] C3 x C3 x C108 ---) [4328, 422, 43439] C6 x C108
6) [1489, 856, 62575] C3 x C3 x C108 ---) [10012, 1712, 482436] C3 x C108
7) [1765, 553, 65421] C3 x C3 x C108 ---) [7269, 1106, 44125] C3 x C54
8) [2045, 538, 64181] C3 x C3 x C108 22) [64181, 269, 2045] C3 x C3 x C108
9) [2177, 1722, 314629] C3 x C3 x C108 ---) [6421, 861, 106673] C3 x C108
10) [2589, 345, 23931] C3 x C3 x C108 ---) [10636, 690, 23301] C3 x C6 x C54
11) [4892, 706, 2309] C3 x C3 x C108 ---) [2309, 353, 30575] C3 x C108
12) [6184, 2126, 239473] C3 x C3 x C108 ---) [1417, 1063, 222624] C3 x C108
13) [14408, 722, 649] C3 x C3 x C108 ---) [649, 361, 32418] C3 x C54
14) [14956, 264, 2468] C3 x C3 x C108 ---) [617, 132, 3739] C3 x C108
15) [16636, 132, 197] C3 x C3 x C108 ---) [197, 264, 16636] C3 x C108
16) [31585, 287, 12696] C3 x C3 x C108 ---) [24, 574, 31585] C3 x C54
17) [44617, 213, 188] C3 x C3 x C108 ---) [188, 426, 44617] C3 x C108
18) [45884, 4112, 4181252] C3 x C3 x C108 ---) [3617, 2056, 11471] C3 x C108
19) [53633, 1211, 31424] C3 x C3 x C108 ---) [1964, 2422, 1340825] C3 x C108
20) [61804, 16408, 34611300] C3 x C3 x C108 ---) [4273, 8204, 8173579] C3 x C108
21) [62941, 265, 1821] C3 x C3 x C108 ---) [1821, 530, 62941] C3 x C54
22) [64181, 269, 2045] C3 x C3 x C108 8) [2045, 538, 64181] C3 x C3 x C108
23) [73469, 569, 62573] C3 x C3 x C108 ---) [1277, 1138, 73469] C3 x C108
24) [87369, 911, 10900] C3 x C3 x C108 ---) [109, 1822, 786321] C3 x C108
25) [98636, 648, 6340] C3 x C3 x C108 ---) [1585, 324, 24659] C6 x C108
26) [116828, 2158, 112789] C3 x C3 x C108 ---) [61, 1079, 262863] C3 x C108
27) [123404, 1406, 593] C3 x C3 x C108 ---) [593, 703, 123404] C3 x C108
28) [134597, 367, 23] C3 x C3 x C108 ---) [92, 734, 134597] C3 x C108
29) [164408, 436, 6422] C3 x C3 x C108 ---) [152, 872, 164408] C6 x C54
30) [206776, 538, 20667] C3 x C3 x C108 ---) [12, 578, 51694] C2 x C54
31) [315597, 581, 5491] C3 x C3 x C108 ---) [76, 1162, 315597] C6 x C54
32) [320785, 589, 6534] C3 x C3 x C108 ---) [24, 1178, 320785] C54
33) [406217, 701, 21296] C3 x C3 x C108 ---) [44, 1402, 406217] C6 x C54
34) [479473, 703, 3684] C3 x C3 x C108 ---) [921, 1406, 479473] C3 x C108
35) [522985, 979, 108864] C3 x C3 x C108 ---) [21, 1958, 522985] C3 x C54
36) [572252, 1592, 61364] C3 x C3 x C108 ---) [29, 796, 143063] C3 x C108
37) [710497, 1039, 92256] C3 x C3 x C108 ---) [24, 2078, 710497] C6 x C54
38) [1193473, 1279, 110592] C3 x C3 x C108 ---) [12, 2558, 1193473] C3 x C108
39) [1330933, 1159, 3087] C3 x C3 x C108 ---) [28, 2318, 1330933] C3 x C108
40) [1614577, 2738, 259584] C3 x C3 x C108 ---) [24, 5476, 6458308] C6 x C54
41) [1632817, 1279, 756] C3 x C3 x C108 ---) [21, 2558, 1632817] C3 x C108
42) [1697249, 1423, 81920] C3 x C3 x C108 ---) [5, 2846, 1697249] C3 x C54
43) [1755593, 1325, 8] C3 x C3 x C108 ---) [8, 2650, 1755593] C6 x C54
44) [1875673, 1411, 28812] C3 x C3 x C108 ---) [12, 2822, 1875673] C6 x C54
45) [2274361, 2155, 592416] C3 x C3 x C108 ---) [136, 4310, 2274361] C6 x C108
46) [2775497, 1827, 140608] C3 x C3 x C108 ---) [13, 3654, 2775497] C3 x C108
47) [2946233, 2539, 875072] C3 x C3 x C108 ---) [113, 5078, 2946233] C3 x C108
48) [3302041, 1829, 10800] C3 x C3 x C108 ---) [12, 3658, 3302041] C3 x C6 x C54
49) [6071497, 2467, 3648] C3 x C3 x C108 ---) [57, 4934, 6071497] C6 x C54
50) [8846489, 3067, 140000] C3 x C3 x C108 ---) [56, 6134, 8846489] C3 x C3 x C54