Genus 2 Curves Database | Igusa CM Invariants Database | Quartic CM Fields Database |
A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).
K | Quartic invariants | Cl(OK) | Igusa invariants | Kr | Reflex invariants | Cl(OKr) | Igusa invariants |
1) | [229, 1274, 199669] | C3 x C3 x C39 | ---) | [199669, 637, 51525] | C3 x C39 | ||
2) | [2213, 461, 8317] | C3 x C3 x C39 | ---) | [8317, 922, 179253] | C3 x C39 | ||
3) | [3229, 293, 14197] | C3 x C3 x C39 | 7) | [14197, 586, 29061] | C3 x C3 x C39 | ||
4) | [5081, 5803, 491072] | C3 x C3 x C39 | 5) | [7673, 6199, 995876] | C3 x C3 x C39 | ||
5) | [7673, 6199, 995876] | C3 x C3 x C39 | 4) | [5081, 5803, 491072] | C3 x C3 x C39 | ||
6) | [9293, 394, 1637] | C3 x C3 x C39 | ---) | [1637, 197, 9293] | C3 x C39 | ||
7) | [14197, 586, 29061] | C3 x C3 x C39 | 3) | [3229, 293, 14197] | C3 x C3 x C39 | ||
8) | [28349, 1398, 35017] | C3 x C3 x C39 | ---) | [97, 699, 113396] | C3 x C39 | ||
9) | [88169, 363, 10900] | C3 x C3 x C39 | ---) | [109, 726, 88169] | C3 x C39 | ||
10) | [859297, 943, 7488] | C3 x C3 x C39 | ---) | [13, 1886, 859297] | C3 x C39 |