Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C3 x C3 x C54 non-normal (D4) quartic CM field invariants: 65 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [56, 6134, 8846489] C3 x C3 x C54 ---) [8846489, 3067, 140000] C3 x C3 x C108
2) [229, 721, 81813] C3 x C3 x C54 ---) [81813, 1442, 192589] C3 x C54
3) [316, 1904, 880708] C3 x C3 x C54 ---) [220177, 952, 6399] C3 x C54
4) [316, 2870, 421081] C3 x C3 x C54 ---) [421081, 1435, 409536] C3 x C54
5) [321, 1374, 425745] C3 x C3 x C54 ---) [47305, 687, 11556] C3 x C1188
6) [473, 920, 40847] C3 x C3 x C54 ---) [163388, 1840, 683012] C3 x C54
7) [473, 285, 14512] C3 x C3 x C54 ---) [3628, 570, 23177] C3 x C54
8) [509, 419, 15259] C3 x C3 x C54 42) [61036, 838, 114525] C3 x C3 x C54
9) [761, 210, 7981] C3 x C3 x C54 ---) [7981, 105, 761] C3 x C54
10) [892, 1264, 291492] C3 x C3 x C54 ---) [8097, 632, 26983] C3 x C378
11) [1016, 5254, 4934153] C3 x C3 x C54 ---) [100697, 2627, 491744] C3 x C756
12) [1101, 133, 1945] C3 x C3 x C54 ---) [1945, 266, 9909] C3 x C108
13) [1257, 523, 42928] C3 x C3 x C54 ---) [10732, 1046, 101817] C3 x C54
14) [1304, 1674, 10753] C3 x C3 x C54 ---) [10753, 837, 172454] C3 x C54
15) [1304, 342, 8377] C3 x C3 x C54 ---) [8377, 171, 5216] C3 x C54
16) [2021, 677, 89825] C3 x C3 x C54 ---) [3593, 1354, 99029] C3 x C54
17) [2089, 282, 17792] C3 x C3 x C54 ---) [1112, 564, 8356] C3 x C54
18) [2429, 1058, 270125] C3 x C3 x C54 ---) [10805, 529, 2429] C3 x C108
19) [2557, 187, 2989] C3 x C3 x C54 ---) [61, 374, 23013] C3 x C54
20) [2636, 1382, 31997] C3 x C3 x C54 ---) [653, 691, 111371] C3 x C54
21) [2677, 2037, 19413] C3 x C3 x C54 ---) [2157, 1561, 323917] C3 x C54
22) [3941, 718, 65825] C3 x C3 x C54 ---) [2633, 359, 15764] C3 x C54
23) [4364, 1808, 79700] C3 x C3 x C54 ---) [797, 904, 184379] C3 x C54
24) [4684, 150, 941] C3 x C3 x C54 ---) [941, 75, 1171] C3 x C54
25) [5477, 223, 109] C3 x C3 x C54 ---) [109, 446, 49293] C3 x C54
26) [5741, 314, 1685] C3 x C3 x C54 ---) [1685, 157, 5741] C6 x C54
27) [8396, 1110, 173689] C3 x C3 x C54 ---) [601, 555, 33584] C3 x C54
28) [9833, 1787, 677888] C3 x C3 x C54 ---) [2648, 3574, 481817] C3 x C54
29) [10949, 493, 58025] C3 x C3 x C54 ---) [2321, 986, 10949] C3 x C54
30) [11197, 3669, 2130921] C3 x C3 x C54 ---) [1401, 3047, 2194612] C3 x C54
31) [14653, 794, 142956] C3 x C3 x C54 ---) [44, 416, 14653] C3 x C54
32) [16689, 852, 31275] C3 x C3 x C54 ---) [556, 1704, 600804] C3 x C54
33) [22732, 4958, 5327089] C3 x C3 x C54 ---) [3169, 2479, 204588] C3 x C54
34) [25537, 2959, 343872] C3 x C3 x C54 ---) [597, 2585, 1251313] C3 x C54
35) [27437, 362, 5324] C3 x C3 x C54 ---) [44, 724, 109748] C3 x C54
36) [29569, 2082, 19197] C3 x C3 x C54 ---) [237, 1041, 266121] C3 x C54
37) [36013, 382, 468] C3 x C3 x C54 ---) [13, 764, 144052] C3 x C54
38) [40101, 413, 32617] C3 x C3 x C54 ---) [193, 826, 40101] C3 x C54
39) [41269, 1702, 63897] C3 x C3 x C54 ---) [177, 851, 165076] C3 x C54
40) [45868, 242, 3174] C3 x C3 x C54 ---) [24, 484, 45868] C3 x C54
41) [52709, 938, 9125] C3 x C3 x C54 ---) [365, 469, 52709] C6 x C54
42) [61036, 838, 114525] C3 x C3 x C54 8) [509, 419, 15259] C3 x C3 x C54
43) [103809, 1059, 46800] C3 x C3 x C54 ---) [13, 997, 103809] C54
44) [104153, 379, 9872] C3 x C3 x C54 ---) [617, 758, 104153] C3 x C54
45) [116492, 5384, 1538756] C3 x C3 x C54 ---) [281, 2692, 1427027] C3 x C54
46) [119713, 425, 15228] C3 x C3 x C54 ---) [188, 850, 119713] C3 x C54
47) [140557, 385, 1917] C3 x C3 x C54 ---) [213, 770, 140557] C3 x C54
48) [174296, 1002, 76705] C3 x C3 x C54 ---) [145, 501, 43574] C3 x C216
49) [183273, 429, 192] C3 x C3 x C54 ---) [12, 858, 183273] C3 x C54
50) [195128, 1042, 76313] C3 x C3 x C54 ---) [17, 521, 48782] C3 x C54
51) [220828, 470, 18] C3 x C3 x C54 ---) [8, 470, 55207] C3 x C54
52) [241729, 2491, 40464] C3 x C3 x C54 ---) [281, 4982, 6043225] C3 x C54
53) [243141, 629, 38125] C3 x C3 x C54 ---) [61, 1258, 243141] C3 x C54
54) [302284, 1104, 2420] C3 x C3 x C54 ---) [5, 552, 75571] C3 x C54
55) [552988, 746, 882] C3 x C3 x C54 ---) [8, 746, 138247] C3 x C54
56) [726737, 863, 4508] C3 x C3 x C54 ---) [92, 1726, 726737] C3 x C54
57) [731369, 1747, 580160] C3 x C3 x C54 ---) [185, 3494, 731369] C6 x C54
58) [771569, 3725, 1732876] C3 x C3 x C54 ---) [76, 7450, 6944121] C3 x C54
59) [980709, 3962, 1525] C3 x C3 x C54 ---) [61, 1981, 980709] C3 x C54
60) [1100833, 1265, 124848] C3 x C3 x C54 ---) [12, 2530, 1100833] C3 x C54
61) [1158961, 2162, 9600] C3 x C3 x C54 ---) [24, 4324, 4635844] C3 x C54
62) [1476281, 1219, 2420] C3 x C3 x C54 ---) [5, 2438, 1476281] C3 x C54
63) [1483057, 3659, 10192] C3 x C3 x C54 ---) [13, 2765, 1483057] C3 x C54
64) [2050921, 2323, 836352] C3 x C3 x C54 ---) [12, 4646, 2050921] C3 x C54
65) [2478109, 1577, 2205] C3 x C3 x C54 ---) [5, 3154, 2478109] C3 x C54