Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C3 x C339 non-normal (D4) quartic CM field invariants: 58 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [229, 442, 40597] C3 x C339 ---) [40597, 221, 2061] C339
2) [229, 2386, 30013] C3 x C339 ---) [30013, 1193, 348309] C339
3) [257, 770, 147197] C3 x C339 ---) [147197, 385, 257] C339
4) [257, 706, 98909] C3 x C339 ---) [98909, 353, 6425] C339
5) [653, 2237, 1192109] C3 x C339 ---) [1192109, 4474, 235733] C3 x C3729
6) [1013, 1190, 337817] C3 x C339 41) [337817, 595, 4052] C3 x C339
7) [1901, 677, 57077] C3 x C339 39) [57077, 1354, 230021] C3 x C339
8) [2089, 459, 52148] C3 x C339 ---) [13037, 918, 2089] C339
9) [2557, 2302, 1161153] C3 x C339 ---) [2633, 1151, 40912] C339
10) [2557, 2481, 4001] C3 x C339 15) [4001, 2139, 1022800] C3 x C339
11) [2713, 351, 13844] C3 x C339 ---) [3461, 702, 67825] C339
12) [2857, 1427, 62676] C3 x C339 ---) [1741, 1789, 482833] C339
13) [2857, 442, 37413] C3 x C339 ---) [4157, 221, 2857] C339
14) [3877, 353, 6921] C3 x C339 ---) [769, 706, 96925] C339
15) [4001, 2139, 1022800] C3 x C339 10) [2557, 2481, 4001] C3 x C339
16) [4001, 3119, 1470800] C3 x C339 ---) [3677, 3281, 484121] C339
17) [4481, 875, 2084] C3 x C339 ---) [521, 1339, 448100] C339
18) [4649, 6803, 1080896] C3 x C339 ---) [16889, 5975, 5374244] C339
19) [4933, 7317, 10660373] C3 x C339 ---) [11093, 3741, 833677] C339
20) [4933, 6845, 11061117] C3 x C339 ---) [15173, 5957, 4740613] C339
21) [5477, 3062, 941849] C3 x C339 ---) [2609, 1531, 350528] C339
22) [5801, 7450, 1600709] C3 x C339 ---) [13229, 3725, 3068729] C3 x C1695
23) [7673, 5074, 1249421] C3 x C339 ---) [3461, 2537, 1296737] C339
24) [8597, 2802, 1928413] C3 x C339 ---) [2293, 1401, 8597] C339
25) [10333, 5321, 3149137] C3 x C339 ---) [5953, 5815, 5951808] C339
26) [10457, 803, 33104] C3 x C339 ---) [2069, 1606, 512393] C339
27) [14389, 1369, 33273] C3 x C339 ---) [3697, 2738, 1741069] C339
28) [14969, 575, 48976] C3 x C339 ---) [3061, 1150, 134721] C339
29) [15641, 1891, 14164] C3 x C339 ---) [3541, 3782, 3519225] C339
30) [16477, 5538, 6019661] C3 x C339 ---) [3581, 2769, 411925] C339
31) [16649, 6667, 1917812] C3 x C339 ---) [2837, 5173, 16649] C339
32) [16661, 2713, 3217] C3 x C339 ---) [3217, 5426, 7347501] C339
33) [17929, 4227, 4462400] C3 x C339 ---) [2789, 6013, 448225] C339
34) [18097, 546, 2141] C3 x C339 ---) [2141, 273, 18097] C339
35) [18269, 1357, 346181] C3 x C339 ---) [2861, 2714, 456725] C339
36) [18269, 465, 49489] C3 x C339 ---) [409, 930, 18269] C339
37) [18269, 5925, 2523841] C3 x C339 ---) [3001, 4827, 1826900] C339
38) [21737, 1511, 521872] C3 x C339 ---) [193, 1395, 86948] C339
39) [57077, 1354, 230021] C3 x C339 7) [1901, 677, 57077] C3 x C339
40) [243157, 2026, 53541] C3 x C339 ---) [661, 1013, 243157] C339
41) [337817, 595, 4052] C3 x C339 6) [1013, 1190, 337817] C3 x C339
42) [350437, 677, 26973] C3 x C339 ---) [37, 1354, 350437] C339
43) [496609, 909, 82418] C3 x C339 ---) [8, 1818, 496609] C339
44) [620033, 791, 1412] C3 x C339 ---) [353, 1582, 620033] C339
45) [735209, 947, 40400] C3 x C339 ---) [101, 1894, 735209] C339
46) [1190953, 1171, 45072] C3 x C339 ---) [313, 2342, 1190953] C339
47) [1211669, 1213, 64925] C3 x C339 ---) [53, 2426, 1211669] C339
48) [1461697, 1247, 23328] C3 x C339 ---) [8, 2494, 1461697] C339
49) [3145841, 2279, 512000] C3 x C339 ---) [5, 3637, 3145841] C339
50) [3661561, 1963, 47952] C3 x C339 ---) [37, 3926, 3661561] C339
51) [4504249, 2123, 720] C3 x C339 ---) [5, 4246, 4504249] C339
52) [4511209, 2131, 7488] C3 x C339 ---) [13, 4262, 4511209] C339
53) [4592201, 2659, 619520] C3 x C339 ---) [5, 4457, 4592201] C339
54) [6286849, 2687, 233280] C3 x C339 ---) [5, 5374, 6286849] C339
55) [6771001, 2603, 1152] C3 x C339 ---) [8, 5206, 6771001] C339
56) [8577449, 3443, 819200] C3 x C339 ---) [8, 6886, 8577449] C339
57) [17522777, 4187, 2048] C3 x C339 ---) [8, 8374, 17522777] C339
58) [23441849, 4843, 3200] C3 x C339 ---) [8, 9686, 23441849] C339