Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C3 x C39 non-normal (D4) quartic CM field invariants: 224 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 1501, 460289] C3 x C39 ---) [460289, 767, 32000] C3 x C3 x C195
2) [5, 1774, 778769] C3 x C39 214) [778769, 887, 2000] C3 x C39
3) [5, 2773, 1911101] C3 x C39 219) [1911101, 1961, 483605] C3 x C39
4) [5, 2981, 2168029] C3 x C39 221) [2168029, 1977, 435125] C3 x C39
5) [5, 2809, 1955509] C3 x C39 220) [1955509, 2253, 780125] C3 x C39
6) [8, 3334, 2254601] C3 x C39 222) [2254601, 1667, 131072] C3 x C39
7) [8, 3286, 2637497] C3 x C39 224) [2637497, 1643, 15488] C3 x C39
8) [8, 3046, 2282537] C3 x C39 223) [2282537, 1523, 9248] C3 x C39
9) [8, 2722, 1247321] C3 x C39 ---) [1247321, 1361, 151250] C3 x C975
10) [8, 2722, 1850521] C3 x C39 218) [1850521, 1361, 450] C3 x C39
11) [8, 778, 82129] C3 x C39 173) [82129, 389, 17298] C3 x C39
12) [8, 622, 95569] C3 x C39 177) [95569, 311, 288] C3 x C39
13) [8, 2710, 1821913] C3 x C39 217) [1821913, 1355, 3528] C3 x C39
14) [13, 657, 98081] C3 x C39 178) [98081, 971, 15028] C3 x C39
15) [13, 909, 197441] C3 x C39 190) [197441, 1763, 332800] C3 x C39
16) [13, 2126, 903457] C3 x C39 215) [903457, 1063, 56628] C3 x C39
17) [13, 1886, 859297] C3 x C39 ---) [859297, 943, 7488] C3 x C3 x C39
18) [17, 4534, 3398489] C3 x C39 ---) [3398489, 2267, 435200] C3 x C195
19) [29, 1094, 194809] C3 x C39 ---) [194809, 547, 26100] C3 x C3 x C117
20) [29, 1101, 294169] C3 x C39 201) [294169, 2202, 35525] C3 x C39
21) [29, 1541, 288989] C3 x C39 200) [288989, 2861, 240149] C3 x C39
22) [37, 1626, 305621] C3 x C39 203) [305621, 813, 88837] C3 x C39
23) [37, 801, 160169] C3 x C39 187) [160169, 1602, 925] C3 x C39
24) [41, 2366, 1383089] C3 x C39 216) [1383089, 1183, 4100] C3 x C39
25) [53, 481, 41609] C3 x C39 161) [41609, 962, 64925] C3 x C39
26) [97, 699, 113396] C3 x C39 ---) [28349, 1398, 35017] C3 x C3 x C39
27) [97, 2542, 1613889] C3 x C39 188) [179321, 1271, 388] C3 x C39
28) [97, 1310, 427473] C3 x C39 164) [47497, 655, 388] C3 x C39
29) [97, 1590, 234713] C3 x C39 196) [234713, 795, 99328] C3 x C39
30) [101, 1714, 701725] C3 x C39 153) [28069, 857, 8181] C3 x C39
31) [109, 726, 88169] C3 x C39 ---) [88169, 363, 10900] C3 x C3 x C39
32) [113, 926, 212561] C3 x C39 194) [212561, 463, 452] C3 x C39
33) [157, 1465, 225657] C3 x C39 147) [25073, 1387, 424528] C3 x C39
34) [157, 809, 154789] C3 x C39 186) [154789, 1618, 35325] C3 x C39
35) [157, 789, 19001] C3 x C39 139) [19001, 1578, 546517] C3 x C39
36) [173, 505, 22193] C3 x C39 142) [22193, 1010, 166253] C3 x C39
37) [181, 2341, 444753] C3 x C39 165) [49417, 3059, 1338676] C3 x C39
38) [193, 5542, 5590953] C3 x C39 213) [621217, 2771, 521872] C3 x C39
39) [193, 1358, 433249] C3 x C39 210) [433249, 679, 6948] C3 x C39
40) [197, 374, 31817] C3 x C39 157) [31817, 187, 788] C3 x C39
41) [197, 1822, 751121] C3 x C39 130) [15329, 911, 19700] C3 x C39
42) [229, 1185, 11621] C3 x C39 ---) [11621, 1125, 313501] C273
43) [229, 293, 8581] C3 x C39 115) [8581, 586, 51525] C3 x C39
44) [229, 261, 14225] C3 x C39 ---) [569, 311, 22900] C39
45) [229, 445, 46701] C3 x C39 ---) [5189, 890, 11221] C39
46) [233, 2146, 1128029] C3 x C39 146) [23021, 1073, 5825] C3 x C39
47) [241, 1511, 505168] C3 x C39 155) [31573, 2981, 445609] C3 x C39
48) [257, 1795, 804928] C3 x C39 124) [12577, 1735, 749412] C3 x C39
49) [257, 955, 140048] C3 x C39 ---) [8753, 1243, 16448] C39
50) [257, 631, 29572] C3 x C39 ---) [7393, 1262, 279873] C39
51) [257, 1302, 12601] C3 x C39 ---) [12601, 651, 102800] C39
52) [293, 1218, 32173] C3 x C39 158) [32173, 609, 84677] C3 x C39
53) [317, 1794, 12109] C3 x C39 122) [12109, 897, 198125] C3 x C39
54) [541, 1050, 13781] C3 x C39 125) [13781, 525, 65461] C3 x C39
55) [557, 837, 4561] C3 x C39 97) [4561, 1674, 682325] C3 x C39
56) [641, 1759, 96464] C3 x C39 107) [6029, 1105, 231401] C3 x C39
57) [677, 1145, 14813] C3 x C39 128) [14813, 2290, 1251773] C3 x C39
58) [733, 706, 51309] C3 x C39 ---) [5701, 353, 18325] C39
59) [733, 589, 64557] C3 x C39 ---) [797, 709, 123877] C39
60) [761, 855, 22756] C3 x C39 ---) [5689, 1710, 640001] C39
61) [761, 226, 9725] C3 x C39 ---) [389, 113, 761] C39
62) [761, 555, 76816] C3 x C39 ---) [4801, 1110, 761] C39
63) [769, 339, 23924] C3 x C39 106) [5981, 678, 19225] C3 x C39
64) [769, 542, 61137] C3 x C39 110) [6793, 271, 3076] C3 x C39
65) [797, 2929, 1809821] C3 x C39 119) [10709, 1489, 230333] C3 x C39
66) [809, 2122, 578837] C3 x C39 121) [11813, 1061, 136721] C3 x C39
67) [881, 2179, 1181504] C3 x C39 136) [18461, 4249, 1628969] C3 x C39
68) [1061, 325, 26141] C3 x C39 150) [26141, 650, 1061] C3 x C39
69) [1153, 3819, 3113216] C3 x C39 ---) [12161, 2583, 1664932] C3 x C429
70) [1229, 154, 1013] C3 x C39 ---) [1013, 77, 1229] C39
71) [1277, 1646, 656897] C3 x C39 78) [2273, 823, 5108] C3 x C39
72) [1373, 189, 349] C3 x C39 ---) [349, 378, 34325] C39
73) [1373, 781, 1117] C3 x C39 ---) [1117, 1341, 67277] C39
74) [1597, 2154, 1000229] C3 x C39 91) [3461, 1077, 39925] C3 x C39
75) [1637, 197, 9293] C3 x C39 ---) [9293, 394, 1637] C3 x C3 x C39
76) [1901, 961, 93533] C3 x C39 ---) [773, 977, 1901] C39
77) [2089, 267, 17300] C3 x C39 ---) [173, 534, 2089] C39
78) [2273, 823, 5108] C3 x C39 71) [1277, 1646, 656897] C3 x C39
79) [2333, 1889, 4957] C3 x C39 99) [4957, 3225, 2242013] C3 x C39
80) [2521, 2831, 1725700] C3 x C39 ---) [17257, 5662, 1111761] C3 x C273
81) [2557, 57, 173] C3 x C39 ---) [173, 114, 2557] C39
82) [2557, 217, 11133] C3 x C39 ---) [1237, 434, 2557] C39
83) [2677, 474, 45461] C3 x C39 ---) [269, 237, 2677] C39
84) [2713, 571, 48276] C3 x C39 ---) [149, 369, 2713] C39
85) [2749, 2497, 40617] C3 x C39 96) [4513, 2539, 1583424] C3 x C39
86) [2753, 643, 97168] C3 x C39 108) [6073, 1286, 24777] C3 x C39
87) [2917, 325, 25677] C3 x C39 ---) [317, 650, 2917] C39
88) [3089, 5287, 2872772] C3 x C39 127) [14657, 5183, 6536324] C3 x C39
89) [3229, 754, 129213] C3 x C39 ---) [293, 377, 3229] C39
90) [3301, 3181, 33309] C3 x C39 92) [3701, 2601, 557869] C3 x C39
91) [3461, 1077, 39925] C3 x C39 74) [1597, 2154, 1000229] C3 x C39
92) [3701, 2601, 557869] C3 x C39 90) [3301, 3181, 33309] C3 x C39
93) [3877, 541, 25677] C3 x C39 ---) [317, 1082, 189973] C39
94) [4133, 3445, 1841797] C3 x C39 109) [6373, 4233, 4133] C3 x C39
95) [4217, 1287, 33508] C3 x C39 114) [8377, 2574, 1522337] C3 x C39
96) [4513, 2539, 1583424] C3 x C39 85) [2749, 2497, 40617] C3 x C39
97) [4561, 1674, 682325] C3 x C39 55) [557, 837, 4561] C3 x C39
98) [4729, 2215, 1026756] C3 x C39 ---) [3169, 3751, 170244] C39
99) [4957, 3225, 2242013] C3 x C39 79) [2333, 1889, 4957] C3 x C39
100) [5081, 391, 6464] C3 x C39 ---) [101, 733, 127025] C39
101) [5081, 1142, 857] C3 x C39 ---) [857, 571, 81296] C39
102) [5081, 622, 15425] C3 x C39 ---) [617, 311, 20324] C39
103) [5297, 1139, 164096] C3 x C39 ---) [641, 1871, 21188] C39
104) [5477, 77, 113] C3 x C39 ---) [113, 154, 5477] C39
105) [5741, 129, 2725] C3 x C39 ---) [109, 258, 5741] C39
106) [5981, 678, 19225] C3 x C39 63) [769, 339, 23924] C3 x C39
107) [6029, 1105, 231401] C3 x C39 56) [641, 1759, 96464] C3 x C39
108) [6073, 1286, 24777] C3 x C39 86) [2753, 643, 97168] C3 x C39
109) [6373, 4233, 4133] C3 x C39 94) [4133, 3445, 1841797] C3 x C39
110) [6793, 271, 3076] C3 x C39 64) [769, 542, 61137] C3 x C39
111) [6997, 1018, 231093] C3 x C39 ---) [317, 509, 6997] C39
112) [8017, 3835, 1991232] C3 x C39 ---) [3457, 3703, 2597508] C39
113) [8317, 922, 179253] C3 x C39 ---) [2213, 461, 8317] C3 x C3 x C39
114) [8377, 2574, 1522337] C3 x C39 95) [4217, 1287, 33508] C3 x C39
115) [8581, 586, 51525] C3 x C39 43) [229, 293, 8581] C3 x C39
116) [8713, 335, 8452] C3 x C39 ---) [2113, 670, 78417] C39
117) [9281, 1910, 318041] C3 x C39 ---) [881, 955, 148496] C39
118) [9281, 2675, 951296] C3 x C39 ---) [929, 1927, 928100] C39
119) [10709, 1489, 230333] C3 x C39 65) [797, 2929, 1809821] C3 x C39
120) [10889, 818, 123725] C3 x C39 ---) [101, 409, 10889] C39
121) [11813, 1061, 136721] C3 x C39 66) [809, 2122, 578837] C3 x C39
122) [12109, 897, 198125] C3 x C39 53) [317, 1794, 12109] C3 x C39
123) [12401, 807, 10900] C3 x C39 ---) [109, 881, 111609] C39
124) [12577, 1735, 749412] C3 x C39 48) [257, 1795, 804928] C3 x C39
125) [13781, 525, 65461] C3 x C39 54) [541, 1050, 13781] C3 x C39
126) [14653, 225, 8993] C3 x C39 ---) [17, 450, 14653] C39
127) [14657, 5183, 6536324] C3 x C39 88) [3089, 5287, 2872772] C3 x C39
128) [14813, 2290, 1251773] C3 x C39 57) [677, 1145, 14813] C3 x C39
129) [15061, 869, 4293] C3 x C39 ---) [53, 789, 15061] C39
130) [15329, 911, 19700] C3 x C39 41) [197, 1822, 751121] C3 x C39
131) [15733, 165, 2873] C3 x C39 ---) [17, 330, 15733] C39
132) [16477, 257, 12393] C3 x C39 ---) [17, 514, 16477] C39
133) [17477, 697, 12221] C3 x C39 ---) [101, 1333, 436925] C39
134) [17477, 205, 6137] C3 x C39 ---) [17, 410, 17477] C39
135) [18257, 691, 78292] C3 x C39 ---) [37, 489, 18257] C39
136) [18461, 4249, 1628969] C3 x C39 67) [881, 2179, 1181504] C3 x C39
137) [18521, 475, 51776] C3 x C39 ---) [809, 950, 18521] C39
138) [18661, 545, 32269] C3 x C39 ---) [61, 1045, 167949] C39
139) [19001, 1578, 546517] C3 x C39 35) [157, 789, 19001] C3 x C39
140) [19949, 578, 3725] C3 x C39 ---) [149, 289, 19949] C39
141) [21737, 211, 5696] C3 x C39 ---) [89, 422, 21737] C39
142) [22193, 1010, 166253] C3 x C39 36) [173, 505, 22193] C3 x C39
143) [22709, 738, 45325] C3 x C39 ---) [37, 369, 22709] C39
144) [22709, 809, 21689] C3 x C39 ---) [41, 755, 90836] C39
145) [22721, 1279, 130628] C3 x C39 ---) [113, 1331, 363536] C39
146) [23021, 1073, 5825] C3 x C39 46) [233, 2146, 1128029] C3 x C39
147) [25073, 1387, 424528] C3 x C39 33) [157, 1465, 225657] C3 x C39
148) [26029, 557, 18997] C3 x C39 ---) [157, 1114, 234261] C39
149) [26113, 1294, 801] C3 x C39 ---) [89, 647, 104452] C39
150) [26141, 650, 1061] C3 x C39 68) [1061, 325, 26141] C3 x C39
151) [27329, 931, 155200] C3 x C39 ---) [97, 1791, 109316] C39
152) [27617, 691, 57232] C3 x C39 ---) [73, 1382, 248553] C39
153) [28069, 857, 8181] C3 x C39 30) [101, 1714, 701725] C3 x C39
154) [30553, 1127, 248788] C3 x C39 ---) [37, 665, 30553] C39
155) [31573, 2981, 445609] C3 x C39 47) [241, 1511, 505168] C3 x C39
156) [31793, 181, 242] C3 x C39 ---) [8, 362, 31793] C39
157) [31817, 187, 788] C3 x C39 40) [197, 374, 31817] C3 x C39
158) [32173, 609, 84677] C3 x C39 52) [293, 1218, 32173] C3 x C39
159) [34157, 737, 127253] C3 x C39 ---) [53, 1229, 34157] C39
160) [34253, 797, 81733] C3 x C39 ---) [37, 813, 34253] C39
161) [41609, 962, 64925] C3 x C39 25) [53, 481, 41609] C3 x C39
162) [42073, 2011, 1000512] C3 x C39 ---) [193, 2695, 1514628] C39
163) [45841, 279, 8000] C3 x C39 ---) [5, 437, 45841] C39
164) [47497, 655, 388] C3 x C39 28) [97, 1310, 427473] C3 x C39
165) [49417, 3059, 1338676] C3 x C39 37) [181, 2341, 444753] C3 x C39
166) [53269, 237, 725] C3 x C39 ---) [29, 474, 53269] C39
167) [59233, 295, 6948] C3 x C39 ---) [193, 590, 59233] C39
168) [61861, 309, 8405] C3 x C39 ---) [5, 517, 61861] C39
169) [70061, 1021, 102973] C3 x C39 ---) [13, 537, 70061] C39
170) [70481, 559, 60500] C3 x C39 ---) [5, 577, 70481] C39
171) [72169, 563, 61200] C3 x C39 ---) [17, 1126, 72169] C39
172) [75821, 529, 51005] C3 x C39 ---) [5, 577, 75821] C39
173) [82129, 389, 17298] C3 x C39 11) [8, 778, 82129] C3 x C39
174) [88169, 313, 2450] C3 x C39 ---) [8, 626, 88169] C39
175) [91781, 341, 6125] C3 x C39 ---) [5, 673, 91781] C39
176) [92809, 323, 2880] C3 x C39 ---) [5, 646, 92809] C39
177) [95569, 311, 288] C3 x C39 12) [8, 622, 95569] C3 x C39
178) [98081, 971, 15028] C3 x C39 14) [13, 657, 98081] C3 x C39
179) [102101, 333, 2197] C3 x C39 ---) [13, 666, 102101] C39
180) [105401, 353, 4802] C3 x C39 ---) [8, 706, 105401] C39
181) [111409, 383, 8820] C3 x C39 ---) [5, 729, 111409] C39
182) [111829, 493, 32805] C3 x C39 ---) [5, 669, 111829] C39
183) [115781, 341, 125] C3 x C39 ---) [5, 682, 115781] C39
184) [137177, 1307, 392768] C3 x C39 ---) [17, 1487, 548708] C39
185) [145897, 387, 968] C3 x C39 ---) [8, 774, 145897] C39
186) [154789, 1618, 35325] C3 x C39 34) [157, 809, 154789] C3 x C39
187) [160169, 1602, 925] C3 x C39 23) [37, 801, 160169] C3 x C39
188) [179321, 1271, 388] C3 x C39 27) [97, 2542, 1613889] C3 x C39
189) [181913, 491, 14792] C3 x C39 ---) [8, 982, 181913] C39
190) [197441, 1763, 332800] C3 x C39 15) [13, 909, 197441] C3 x C39
191) [199669, 637, 51525] C3 x C39 ---) [229, 1274, 199669] C3 x C3 x C39
192) [206993, 815, 114308] C3 x C39 ---) [17, 1630, 206993] C39
193) [208217, 475, 4352] C3 x C39 ---) [17, 950, 208217] C39
194) [212561, 463, 452] C3 x C39 32) [113, 926, 212561] C3 x C39
195) [216217, 465, 2] C3 x C39 ---) [8, 930, 216217] C39
196) [234713, 795, 99328] C3 x C39 29) [97, 1590, 234713] C3 x C39
197) [240257, 535, 11492] C3 x C39 ---) [17, 1070, 240257] C39
198) [245897, 547, 13328] C3 x C39 ---) [17, 1094, 245897] C39
199) [260873, 515, 1088] C3 x C39 ---) [17, 1030, 260873] C39
200) [288989, 2861, 240149] C3 x C39 21) [29, 1541, 288989] C3 x C39
201) [294169, 2202, 35525] C3 x C39 20) [29, 1101, 294169] C3 x C39
202) [296377, 545, 162] C3 x C39 ---) [8, 1090, 296377] C39
203) [305621, 813, 88837] C3 x C39 22) [37, 1626, 305621] C3 x C39
204) [311609, 769, 69938] C3 x C39 ---) [8, 1538, 311609] C39
205) [322409, 569, 338] C3 x C39 ---) [8, 1138, 322409] C39
206) [371669, 733, 41405] C3 x C39 ---) [5, 1289, 371669] C39
207) [375257, 667, 17408] C3 x C39 ---) [17, 1334, 375257] C39
208) [385193, 755, 46208] C3 x C39 ---) [8, 1510, 385193] C39
209) [416201, 649, 1250] C3 x C39 ---) [8, 1298, 416201] C39
210) [433249, 679, 6948] C3 x C39 39) [193, 1358, 433249] C3 x C39
211) [447901, 697, 9477] C3 x C39 ---) [13, 1394, 447901] C39
212) [568349, 793, 15125] C3 x C39 ---) [5, 1586, 568349] C39
213) [621217, 2771, 521872] C3 x C39 38) [193, 5542, 5590953] C3 x C39
214) [778769, 887, 2000] C3 x C39 2) [5, 1774, 778769] C3 x C39
215) [903457, 1063, 56628] C3 x C39 16) [13, 2126, 903457] C3 x C39
216) [1383089, 1183, 4100] C3 x C39 24) [41, 2366, 1383089] C3 x C39
217) [1821913, 1355, 3528] C3 x C39 13) [8, 2710, 1821913] C3 x C39
218) [1850521, 1361, 450] C3 x C39 10) [8, 2722, 1850521] C3 x C39
219) [1911101, 1961, 483605] C3 x C39 3) [5, 2773, 1911101] C3 x C39
220) [1955509, 2253, 780125] C3 x C39 5) [5, 2809, 1955509] C3 x C39
221) [2168029, 1977, 435125] C3 x C39 4) [5, 2981, 2168029] C3 x C39
222) [2254601, 1667, 131072] C3 x C39 6) [8, 3334, 2254601] C3 x C39
223) [2282537, 1523, 9248] C3 x C39 8) [8, 3046, 2282537] C3 x C39
224) [2637497, 1643, 15488] C3 x C39 7) [8, 3286, 2637497] C3 x C39