Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C3 x C51 non-normal (D4) quartic CM field invariants: 215 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 1318, 424601] C3 x C51 198) [424601, 659, 2420] C3 x C51
2) [5, 5281, 6841829] C3 x C51 ---) [6841829, 3557, 1452605] C3 x C3 x C561
3) [5, 1318, 416281] C3 x C51 196) [416281, 659, 4500] C3 x C51
4) [5, 2333, 1213661] C3 x C51 207) [1213661, 1321, 132845] C3 x C51
5) [5, 2349, 1111489] C3 x C51 206) [1111489, 1183, 72000] C3 x C51
6) [8, 3058, 2337193] C3 x C51 211) [2337193, 1529, 162] C3 x C51
7) [8, 3670, 3350297] C3 x C51 ---) [3350297, 1835, 4232] C3 x C3 x C51
8) [8, 5446, 4742057] C3 x C51 214) [4742057, 2723, 668168] C3 x C51
9) [8, 2738, 1873513] C3 x C51 210) [1873513, 1369, 162] C3 x C51
10) [8, 1498, 556769] C3 x C51 201) [556769, 749, 1058] C3 x C51
11) [8, 4166, 4332617] C3 x C51 212) [4332617, 2083, 1568] C3 x C51
12) [8, 4354, 4547129] C3 x C51 213) [4547129, 2177, 48050] C3 x C51
13) [13, 1665, 516617] C3 x C51 ---) [516617, 2307, 1201408] C3 x C3 x C51
14) [13, 1665, 692117] C3 x C51 203) [692117, 2969, 646477] C3 x C51
15) [13, 829, 165229] C3 x C51 180) [165229, 1597, 265837] C3 x C51
16) [13, 1713, 236729] C3 x C51 190) [236729, 1727, 212992] C3 x C51
17) [13, 2025, 587417] C3 x C51 202) [587417, 2351, 60112] C3 x C51
18) [17, 3814, 2303849] C3 x C51 ---) [2303849, 1907, 333200] C3 x C255
19) [17, 3110, 1842473] C3 x C51 209) [1842473, 1555, 143888] C3 x C51
20) [17, 5414, 6213737] C3 x C51 215) [6213737, 2707, 278528] C3 x C51
21) [29, 777, 147097] C3 x C51 177) [147097, 1554, 15341] C3 x C51
22) [37, 1410, 454253] C3 x C51 199) [454253, 705, 10693] C3 x C51
23) [41, 150, 4969] C3 x C51 93) [4969, 75, 164] C3 x C51
24) [89, 2470, 1473961] C3 x C51 208) [1473961, 1235, 12816] C3 x C51
25) [97, 7606, 14065497] C3 x C51 ---) [1562833, 3803, 99328] C3 x C3 x C153
26) [97, 1695, 711248] C3 x C51 161) [44453, 1753, 668233] C3 x C51
27) [101, 1193, 55817] C3 x C51 166) [55817, 2386, 1199981] C3 x C51
28) [113, 1387, 94228] C3 x C51 137) [23557, 1053, 271313] C3 x C51
29) [149, 721, 33073] C3 x C51 148) [33073, 1442, 387549] C3 x C51
30) [197, 637, 97453] C3 x C51 171) [97453, 1274, 15957] C3 x C51
31) [197, 637, 75389] C3 x C51 ---) [75389, 1274, 104213] C3 x C3 x C51
32) [229, 114, 2333] C3 x C51 ---) [2333, 57, 229] C51
33) [229, 637, 84897] C3 x C51 ---) [9433, 1274, 66181] C51
34) [229, 2042, 44917] C3 x C51 ---) [44917, 1021, 249381] C51
35) [229, 366, 29825] C3 x C51 ---) [1193, 183, 916] C51
36) [233, 655, 86228] C3 x C51 ---) [21557, 1310, 84113] C3 x C3 x C51
37) [233, 1142, 191833] C3 x C51 ---) [191833, 571, 33552] C3 x C3 x C51
38) [233, 482, 12413] C3 x C51 116) [12413, 241, 11417] C3 x C51
39) [257, 170, 6197] C3 x C51 ---) [6197, 85, 257] C51
40) [257, 1454, 30977] C3 x C51 ---) [30977, 727, 124388] C1173
41) [257, 382, 32369] C3 x C51 ---) [32369, 191, 1028] C51
42) [257, 1694, 22481] C3 x C51 ---) [22481, 847, 173732] C51
43) [257, 438, 31513] C3 x C51 147) [31513, 219, 4112] C3 x C51
44) [257, 195, 1732] C3 x C51 ---) [433, 299, 9252] C51
45) [257, 623, 63044] C3 x C51 ---) [15761, 1246, 135953] C51
46) [269, 1406, 63809] C3 x C51 168) [63809, 703, 107600] C3 x C51
47) [293, 1041, 15937] C3 x C51 127) [15937, 2082, 1019933] C3 x C51
48) [349, 1314, 195725] C3 x C51 107) [7829, 657, 58981] C3 x C51
49) [421, 1173, 338825] C3 x C51 121) [13553, 2346, 20629] C3 x C51
50) [449, 1903, 55732] C3 x C51 122) [13933, 1657, 682929] C3 x C51
51) [449, 1331, 52148] C3 x C51 120) [13037, 2249, 1261241] C3 x C51
52) [457, 574, 16561] C3 x C51 129) [16561, 287, 16452] C3 x C51
53) [709, 2541, 14489] C3 x C51 123) [14489, 2743, 283600] C3 x C51
54) [709, 353, 26721] C3 x C51 82) [2969, 706, 17725] C3 x C51
55) [733, 242, 11709] C3 x C51 ---) [1301, 121, 733] C51
56) [733, 1005, 1637] C3 x C51 ---) [1637, 597, 88693] C51
57) [761, 755, 133184] C3 x C51 ---) [2081, 1055, 3044] C255
58) [761, 407, 39700] C3 x C51 ---) [397, 377, 6849] C51
59) [761, 2207, 683300] C3 x C51 ---) [6833, 2203, 596624] C51
60) [773, 241, 12781] C3 x C51 118) [12781, 482, 6957] C3 x C51
61) [797, 173, 5689] C3 x C51 99) [5689, 346, 7173] C3 x C51
62) [1013, 298, 18149] C3 x C51 132) [18149, 149, 1013] C3 x C51
63) [1013, 310, 7817] C3 x C51 ---) [7817, 155, 4052] C3 x C255
64) [1033, 2039, 723024] C3 x C51 94) [5021, 1929, 868753] C3 x C51
65) [1109, 1357, 193925] C3 x C51 106) [7757, 2714, 1065749] C3 x C51
66) [1229, 1445, 101381] C3 x C51 ---) [2069, 1453, 30725] C51
67) [1381, 589, 69813] C3 x C51 105) [7757, 1178, 67669] C3 x C51
68) [1901, 562, 10525] C3 x C51 ---) [421, 281, 17109] C51
69) [1901, 921, 188773] C3 x C51 ---) [1117, 1173, 1901] C51
70) [2053, 6341, 6684637] C3 x C51 133) [18517, 4625, 1972933] C3 x C51
71) [2089, 383, 31972] C3 x C51 ---) [7993, 766, 18801] C51
72) [2089, 1475, 392976] C3 x C51 ---) [2729, 2391, 1412164] C51
73) [2141, 4585, 2557361] C3 x C51 109) [8849, 2359, 8564] C3 x C51
74) [2141, 2342, 138025] C3 x C51 ---) [5521, 1171, 308304] C3 x C3 x C153
75) [2357, 1370, 7253] C3 x C51 103) [7253, 685, 115493] C3 x C51
76) [2557, 793, 156573] C3 x C51 ---) [1933, 1586, 2557] C51
77) [2617, 2878, 1023921] C3 x C51 117) [12641, 1439, 261700] C3 x C51
78) [2749, 1714, 459549] C3 x C51 165) [51061, 857, 68725] C3 x C51
79) [2777, 863, 68864] C3 x C51 ---) [269, 557, 69425] C51
80) [2797, 1074, 8669] C3 x C51 108) [8669, 537, 69925] C3 x C51
81) [2857, 642, 91613] C3 x C51 ---) [317, 321, 2857] C51
82) [2969, 706, 17725] C3 x C51 54) [709, 353, 26721] C3 x C51
83) [3089, 814, 116225] C3 x C51 ---) [4649, 407, 12356] C3 x C3 x C51
84) [3229, 177, 7025] C3 x C51 ---) [281, 354, 3229] C51
85) [3229, 505, 24201] C3 x C51 ---) [2689, 1010, 158221] C51
86) [3673, 3886, 895617] C3 x C51 ---) [11057, 1943, 719908] C3 x C3 x C51
87) [3889, 4038, 94025] C3 x C51 ---) [3761, 2019, 995584] C51
88) [4493, 821, 140429] C3 x C51 ---) [389, 1081, 112325] C51
89) [4493, 1037, 79013] C3 x C51 ---) [653, 1445, 220157] C51
90) [4649, 274, 173] C3 x C51 ---) [173, 137, 4649] C51
91) [4793, 590, 10337] C3 x C51 112) [10337, 295, 19172] C3 x C51
92) [4817, 1534, 511217] C3 x C51 113) [10433, 767, 19268] C3 x C51
93) [4969, 75, 164] C3 x C51 23) [41, 150, 4969] C3 x C51
94) [5021, 1929, 868753] C3 x C51 64) [1033, 2039, 723024] C3 x C51
95) [5281, 894, 115313] C3 x C51 ---) [953, 447, 21124] C51
96) [5281, 590, 2529] C3 x C51 ---) [281, 295, 21124] C51
97) [5281, 1031, 158800] C3 x C51 ---) [397, 1033, 47529] C51
98) [5297, 1467, 59968] C3 x C51 ---) [937, 1747, 762768] C51
99) [5689, 346, 7173] C3 x C51 61) [797, 173, 5689] C3 x C51
100) [5693, 4561, 5130941] C3 x C51 102) [6101, 3901, 142325] C3 x C51
101) [6053, 742, 40793] C3 x C51 ---) [113, 371, 24212] C51
102) [6101, 3901, 142325] C3 x C51 100) [5693, 4561, 5130941] C3 x C51
103) [7253, 685, 115493] C3 x C51 75) [2357, 1370, 7253] C3 x C51
104) [7753, 1311, 102116] C3 x C51 ---) [521, 2111, 775300] C51
105) [7757, 1178, 67669] C3 x C51 67) [1381, 589, 69813] C3 x C51
106) [7757, 2714, 1065749] C3 x C51 65) [1109, 1357, 193925] C3 x C51
107) [7829, 657, 58981] C3 x C51 48) [349, 1314, 195725] C3 x C51
108) [8669, 537, 69925] C3 x C51 80) [2797, 1074, 8669] C3 x C51
109) [8849, 2359, 8564] C3 x C51 73) [2141, 4585, 2557361] C3 x C51
110) [9281, 458, 15317] C3 x C51 ---) [53, 229, 9281] C51
111) [9749, 757, 23837] C3 x C51 ---) [197, 1441, 477701] C51
112) [10337, 295, 19172] C3 x C51 91) [4793, 590, 10337] C3 x C51
113) [10433, 767, 19268] C3 x C51 92) [4817, 1534, 511217] C3 x C51
114) [11197, 289, 18081] C3 x C51 ---) [41, 578, 11197] C51
115) [12197, 821, 19097] C3 x C51 ---) [113, 1015, 195152] C51
116) [12413, 241, 11417] C3 x C51 38) [233, 482, 12413] C3 x C51
117) [12641, 1439, 261700] C3 x C51 77) [2617, 2878, 1023921] C3 x C51
118) [12781, 482, 6957] C3 x C51 60) [773, 241, 12781] C3 x C51
119) [12953, 1467, 534784] C3 x C51 ---) [2089, 2934, 12953] C3 x C3 x C51
120) [13037, 2249, 1261241] C3 x C51 51) [449, 1331, 52148] C3 x C51
121) [13553, 2346, 20629] C3 x C51 49) [421, 1173, 338825] C3 x C51
122) [13933, 1657, 682929] C3 x C51 50) [449, 1903, 55732] C3 x C51
123) [14489, 2743, 283600] C3 x C51 53) [709, 2541, 14489] C3 x C51
124) [14653, 922, 153909] C3 x C51 ---) [349, 461, 14653] C51
125) [15661, 217, 7857] C3 x C51 ---) [97, 434, 15661] C51
126) [15737, 1331, 250112] C3 x C51 ---) [977, 2662, 771113] C51
127) [15937, 2082, 1019933] C3 x C51 47) [293, 1041, 15937] C3 x C51
128) [16481, 3007, 80900] C3 x C51 ---) [809, 3311, 65924] C51
129) [16561, 287, 16452] C3 x C51 52) [457, 574, 16561] C3 x C51
130) [17053, 682, 48069] C3 x C51 ---) [109, 341, 17053] C51
131) [17581, 1061, 171549] C3 x C51 ---) [389, 2122, 439525] C51
132) [18149, 149, 1013] C3 x C51 62) [1013, 298, 18149] C3 x C51
133) [18517, 4625, 1972933] C3 x C51 70) [2053, 6341, 6684637] C3 x C51
134) [20749, 201, 4913] C3 x C51 ---) [17, 402, 20749] C51
135) [21101, 273, 13357] C3 x C51 ---) [37, 546, 21101] C51
136) [21589, 149, 153] C3 x C51 ---) [17, 298, 21589] C51
137) [23557, 1053, 271313] C3 x C51 28) [113, 1387, 94228] C3 x C51
138) [23909, 197, 3725] C3 x C51 ---) [149, 394, 23909] C51
139) [23917, 869, 134977] C3 x C51 ---) [73, 1007, 95668] C51
140) [25793, 1438, 104273] C3 x C51 ---) [617, 719, 103172] C51
141) [26113, 191, 2592] C3 x C51 ---) [8, 382, 26113] C51
142) [27329, 547, 13312] C3 x C51 ---) [13, 333, 27329] C51
143) [27437, 217, 4913] C3 x C51 ---) [17, 434, 27437] C51
144) [28097, 287, 13568] C3 x C51 ---) [53, 574, 28097] C51
145) [29221, 293, 14157] C3 x C51 ---) [13, 586, 29221] C51
146) [29629, 1842, 729725] C3 x C51 ---) [101, 921, 29629] C51
147) [31513, 219, 4112] C3 x C51 43) [257, 438, 31513] C3 x C51
148) [33073, 1442, 387549] C3 x C51 29) [149, 721, 33073] C3 x C51
149) [33301, 913, 261] C3 x C51 ---) [29, 673, 33301] C51
150) [33457, 802, 26973] C3 x C51 ---) [37, 401, 33457] C51
151) [35129, 2158, 602177] C3 x C51 ---) [113, 1079, 140516] C51
152) [35129, 2515, 1150976] C3 x C51 ---) [281, 1975, 140516] C51
153) [35317, 413, 33813] C3 x C51 ---) [13, 565, 35317] C51
154) [35597, 217, 2873] C3 x C51 ---) [17, 434, 35597] C51
155) [36389, 269, 8993] C3 x C51 ---) [17, 538, 36389] C51
156) [36761, 1998, 409825] C3 x C51 ---) [97, 999, 147044] C51
157) [39733, 365, 23373] C3 x C51 ---) [53, 730, 39733] C51
158) [42349, 249, 4913] C3 x C51 ---) [17, 498, 42349] C51
159) [43961, 619, 84800] C3 x C51 ---) [53, 1238, 43961] C51
160) [44357, 325, 15317] C3 x C51 ---) [53, 650, 44357] C51
161) [44453, 1753, 668233] C3 x C51 26) [97, 1695, 711248] C3 x C51
162) [44641, 271, 7200] C3 x C51 ---) [8, 542, 44641] C51
163) [45361, 231, 2000] C3 x C51 ---) [5, 462, 45361] C51
164) [50221, 225, 101] C3 x C51 ---) [101, 450, 50221] C51
165) [51061, 857, 68725] C3 x C51 78) [2749, 1714, 459549] C3 x C51
166) [55817, 2386, 1199981] C3 x C51 27) [101, 1193, 55817] C3 x C51
167) [57077, 277, 4913] C3 x C51 ---) [17, 554, 57077] C51
168) [63809, 703, 107600] C3 x C51 46) [269, 1406, 63809] C3 x C51
169) [68489, 283, 2900] C3 x C51 ---) [29, 566, 68489] C51
170) [70313, 2539, 187792] C3 x C51 ---) [97, 2439, 281252] C51
171) [97453, 1274, 15957] C3 x C51 30) [197, 637, 97453] C3 x C51
172) [105769, 1171, 316368] C3 x C51 ---) [13, 713, 105769] C51
173) [108649, 339, 1568] C3 x C51 ---) [8, 678, 108649] C51
174) [110729, 347, 2420] C3 x C51 ---) [5, 694, 110729] C51
175) [112237, 337, 333] C3 x C51 ---) [37, 674, 112237] C51
176) [117841, 367, 4212] C3 x C51 ---) [13, 734, 117841] C51
177) [147097, 1554, 15341] C3 x C51 21) [29, 777, 147097] C3 x C51
178) [155209, 403, 1800] C3 x C51 ---) [8, 806, 155209] C51
179) [158233, 475, 16848] C3 x C51 ---) [13, 950, 158233] C51
180) [165229, 1597, 265837] C3 x C51 15) [13, 829, 165229] C3 x C51
181) [168601, 497, 19602] C3 x C51 ---) [8, 994, 168601] C51
182) [176261, 421, 245] C3 x C51 ---) [5, 842, 176261] C51
183) [177209, 427, 1280] C3 x C51 ---) [5, 854, 177209] C51
184) [188633, 3235, 305552] C3 x C51 ---) [113, 4003, 3018128] C51
185) [188861, 841, 129605] C3 x C51 ---) [5, 913, 188861] C51
186) [193073, 863, 137924] C3 x C51 ---) [41, 1726, 193073] C51
187) [213901, 561, 25205] C3 x C51 ---) [5, 973, 213901] C51
188) [224869, 693, 63845] C3 x C51 ---) [5, 949, 224869] C51
189) [231821, 529, 12005] C3 x C51 ---) [5, 1058, 231821] C51
190) [236729, 1727, 212992] C3 x C51 16) [13, 1713, 236729] C3 x C51
191) [334661, 869, 105125] C3 x C51 ---) [5, 1157, 334661] C51
192) [334777, 587, 2448] C3 x C51 ---) [17, 1174, 334777] C51
193) [358909, 617, 5445] C3 x C51 ---) [5, 1234, 358909] C51
194) [386381, 641, 6125] C3 x C51 ---) [5, 1282, 386381] C51
195) [403181, 769, 47045] C3 x C51 ---) [5, 1337, 403181] C51
196) [416281, 659, 4500] C3 x C51 3) [5, 1318, 416281] C3 x C51
197) [422789, 997, 142805] C3 x C51 ---) [5, 1301, 422789] C51
198) [424601, 659, 2420] C3 x C51 1) [5, 1318, 424601] C3 x C51
199) [454253, 705, 10693] C3 x C51 22) [37, 1410, 454253] C3 x C51
200) [543149, 737, 5] C3 x C51 ---) [5, 1474, 543149] C51
201) [556769, 749, 1058] C3 x C51 10) [8, 1498, 556769] C3 x C51
202) [587417, 2351, 60112] C3 x C51 17) [13, 2025, 587417] C3 x C51
203) [692117, 2969, 646477] C3 x C51 14) [13, 1665, 692117] C3 x C51
204) [733949, 857, 125] C3 x C51 ---) [5, 1714, 733949] C51
205) [1041269, 1517, 315005] C3 x C51 ---) [5, 2041, 1041269] C51
206) [1111489, 1183, 72000] C3 x C51 5) [5, 2349, 1111489] C3 x C51
207) [1213661, 1321, 132845] C3 x C51 4) [5, 2333, 1213661] C3 x C51
208) [1473961, 1235, 12816] C3 x C51 24) [89, 2470, 1473961] C3 x C51
209) [1842473, 1555, 143888] C3 x C51 19) [17, 3110, 1842473] C3 x C51
210) [1873513, 1369, 162] C3 x C51 9) [8, 2738, 1873513] C3 x C51
211) [2337193, 1529, 162] C3 x C51 6) [8, 3058, 2337193] C3 x C51
212) [4332617, 2083, 1568] C3 x C51 11) [8, 4166, 4332617] C3 x C51
213) [4547129, 2177, 48050] C3 x C51 12) [8, 4354, 4547129] C3 x C51
214) [4742057, 2723, 668168] C3 x C51 8) [8, 5446, 4742057] C3 x C51
215) [6213737, 2707, 278528] C3 x C51 20) [17, 5414, 6213737] C3 x C51