A quartic CM field field K is represented by invariants [D,A,B], where
K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real
quadratic subfield (hence A2-4B = m2D for some m).
Class number:
[Non-normal]
[Cyclic]
Class group C3 x C6 x C30 non-normal (D4) quartic CM field invariants: 58 fields
K |
Quartic invariants |
Cl(OK) |
Igusa invariants |
Kr |
Reflex invariants |
Cl(OKr) |
Igusa invariants |
1) |
[229, 657, 107397] |
C3 x C6 x C30 |
|
---) |
[11933, 1314, 2061] |
C3 x C60 |
2) |
[257, 1654, 618137] |
C3 x C6 x C30 |
|
---) |
[618137, 827, 16448] |
C3 x C12 x C120 |
3) |
[316, 2806, 1948185] |
C3 x C6 x C30 |
|
---) |
[216465, 1403, 5056] |
C6 x C60 |
4) |
[316, 286, 15393] |
C3 x C6 x C30 |
|
---) |
[15393, 143, 1264] |
C6 x C60 |
5) |
[316, 250, 2274] |
C3 x C6 x C30 |
|
---) |
[9096, 500, 53404] |
C6 x C60 |
6) |
[321, 155, 5926] |
C3 x C6 x C30 |
|
---) |
[23704, 310, 321] |
C6 x C30 |
7) |
[321, 1303, 347332] |
C3 x C6 x C30 |
|
---) |
[86833, 2606, 308481] |
C3 x C60 |
8) |
[321, 1910, 398425] |
C3 x C6 x C30 |
|
---) |
[15937, 955, 128400] |
C6 x C30 |
9) |
[469, 1033, 69675] |
C3 x C6 x C30 |
|
---) |
[11148, 2066, 788389] |
C6 x C60 |
10) |
[469, 898, 109677] |
C3 x C6 x C30 |
|
---) |
[109677, 449, 22981] |
C3 x C60 |
11) |
[473, 471, 54396] |
C3 x C6 x C30 |
|
---) |
[6044, 942, 4257] |
C6 x C30 |
12) |
[568, 1222, 146121] |
C3 x C6 x C30 |
|
---) |
[146121, 611, 56800] |
C6 x C60 |
13) |
[568, 666, 42161] |
C3 x C6 x C30 |
|
---) |
[42161, 333, 17182] |
C3 x C6 x C180 |
14) |
[568, 650, 23833] |
C3 x C6 x C30 |
|
---) |
[23833, 325, 20448] |
C6 x C30 |
15) |
[733, 610, 90093] |
C3 x C6 x C30 |
|
---) |
[90093, 305, 733] |
C2 x C6 x C30 |
16) |
[785, 1258, 317141] |
C3 x C6 x C30 |
|
---) |
[2621, 629, 19625] |
C3 x C30 |
17) |
[892, 286, 6177] |
C3 x C6 x C30 |
|
---) |
[6177, 143, 3568] |
C6 x C60 |
18) |
[993, 503, 63004] |
C3 x C6 x C30 |
|
---) |
[63004, 1006, 993] |
C2 x C6 x C30 |
19) |
[1436, 206, 1634] |
C3 x C6 x C30 |
|
---) |
[6536, 412, 35900] |
C6 x C60 |
20) |
[1509, 434, 41053] |
C3 x C6 x C30 |
|
---) |
[41053, 217, 1509] |
C2 x C30 x C30 |
21) |
[1901, 1338, 379125] |
C3 x C6 x C30 |
|
---) |
[1685, 669, 17109] |
C2 x C6 x C30 |
22) |
[2713, 725, 98172] |
C3 x C6 x C30 |
|
---) |
[1212, 1450, 132937] |
C6 x C60 |
23) |
[2777, 85, 1112] |
C3 x C6 x C30 |
|
---) |
[1112, 170, 2777] |
C6 x C30 |
24) |
[2777, 489, 3546] |
C3 x C6 x C30 |
|
---) |
[1576, 978, 224937] |
C6 x C60 |
25) |
[4481, 214, 6968] |
C3 x C6 x C30 |
|
---) |
[6968, 428, 17924] |
C6 x C60 |
26) |
[5613, 367, 32269] |
C3 x C6 x C30 |
|
---) |
[61, 543, 50517] |
C6 x C30 |
27) |
[7148, 1234, 266321] |
C3 x C6 x C30 |
|
---) |
[2201, 617, 28592] |
C3 x C60 |
28) |
[7388, 694, 2201] |
C3 x C6 x C30 |
|
---) |
[2201, 347, 29552] |
C3 x C60 |
29) |
[8572, 190, 453] |
C3 x C6 x C30 |
|
---) |
[453, 95, 2143] |
C3 x C60 |
30) |
[11885, 442, 1301] |
C3 x C6 x C30 |
|
---) |
[1301, 221, 11885] |
C3 x C30 |
31) |
[12248, 728, 22264] |
C3 x C6 x C30 |
|
---) |
[184, 364, 27558] |
C3 x C60 |
32) |
[13269, 888, 144060] |
C3 x C6 x C30 |
|
---) |
[60, 444, 13269] |
C6 x C60 |
33) |
[13589, 173, 4085] |
C3 x C6 x C30 |
|
---) |
[4085, 346, 13589] |
C6 x C60 |
34) |
[15349, 143, 1275] |
C3 x C6 x C30 |
|
---) |
[204, 286, 15349] |
C2 x C6 x C30 |
35) |
[16661, 478, 40460] |
C3 x C6 x C30 |
|
---) |
[140, 956, 66644] |
C6 x C60 |
36) |
[20549, 1293, 1845] |
C3 x C6 x C30 |
|
---) |
[205, 2586, 1664469] |
C6 x C60 |
37) |
[24952, 694, 20601] |
C3 x C6 x C30 |
|
---) |
[2289, 347, 24952] |
C6 x C120 |
38) |
[28473, 1727, 681568] |
C3 x C6 x C30 |
|
---) |
[472, 3454, 256257] |
C3 x C60 |
39) |
[29221, 382, 7260] |
C3 x C6 x C30 |
|
---) |
[60, 764, 116884] |
C6 x C60 |
40) |
[32009, 253, 8000] |
C3 x C6 x C30 |
|
---) |
[5, 359, 32009] |
C60 |
41) |
[32197, 2010, 881237] |
C3 x C6 x C30 |
|
---) |
[917, 1005, 32197] |
C3 x C60 |
42) |
[37085, 193, 41] |
C3 x C6 x C30 |
|
---) |
[41, 386, 37085] |
C3 x C30 |
43) |
[52149, 567, 67335] |
C3 x C6 x C30 |
|
---) |
[60, 1134, 52149] |
C6 x C60 |
44) |
[57677, 241, 101] |
C3 x C6 x C30 |
|
---) |
[101, 482, 57677] |
C3 x C30 |
45) |
[67313, 1342, 180989] |
C3 x C6 x C30 |
|
---) |
[29, 671, 67313] |
C6 x C30 |
46) |
[80101, 301, 2625] |
C3 x C6 x C30 |
|
---) |
[105, 602, 80101] |
C6 x C60 |
47) |
[97001, 461, 28880] |
C3 x C6 x C30 |
|
---) |
[5, 623, 97001] |
C3 x C60 |
48) |
[104332, 2036, 97336] |
C3 x C6 x C30 |
|
---) |
[184, 1018, 234747] |
C3 x C60 |
49) |
[105401, 325, 56] |
C3 x C6 x C30 |
|
---) |
[56, 650, 105401] |
C6 x C30 |
50) |
[142616, 758, 1025] |
C3 x C6 x C30 |
|
---) |
[41, 379, 35654] |
C6 x C30 |
51) |
[146161, 609, 56180] |
C3 x C6 x C30 |
|
---) |
[5, 767, 146161] |
C3 x C60 |
52) |
[186401, 3454, 113] |
C3 x C6 x C30 |
|
---) |
[113, 1727, 745604] |
C3 x C30 |
53) |
[196369, 445, 414] |
C3 x C6 x C30 |
|
---) |
[184, 890, 196369] |
C3 x C60 |
54) |
[201129, 627, 48000] |
C3 x C6 x C30 |
|
---) |
[120, 1254, 201129] |
C6 x C60 |
55) |
[264757, 1545, 1053] |
C3 x C6 x C30 |
|
---) |
[13, 3090, 2382813] |
C6 x C30 |
56) |
[418469, 683, 12005] |
C3 x C6 x C30 |
|
---) |
[5, 1366, 418469] |
C6 x C30 |
57) |
[698869, 973, 61965] |
C3 x C6 x C30 |
|
---) |
[85, 1946, 698869] |
C2 x C6 x C30 |
58) |
[906601, 1171, 116160] |
C3 x C6 x C30 |
|
---) |
[60, 2342, 906601] |
C6 x C60 |