Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C3 x C69 non-normal (D4) quartic CM field invariants: 211 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 2657, 1763381] C3 x C69 205) [1763381, 1949, 508805] C3 x C69
2) [5, 3409, 2349209] C3 x C69 206) [2349209, 1723, 154880] C3 x C69
3) [5, 3254, 2631449] C3 x C69 208) [2631449, 1627, 3920] C3 x C69
4) [8, 1246, 301601] C3 x C69 175) [301601, 623, 21632] C3 x C69
5) [8, 6502, 10364201] C3 x C69 210) [10364201, 3251, 51200] C3 x C69
6) [8, 1994, 801809] C3 x C69 197) [801809, 997, 48050] C3 x C69
7) [8, 4534, 5088089] C3 x C69 209) [5088089, 2267, 12800] C3 x C69
8) [13, 2649, 556841] C3 x C69 190) [556841, 2663, 520000] C3 x C69
9) [13, 3806, 1936609] C3 x C69 ---) [1936609, 1903, 421200] C3 x C3 x C69
10) [17, 7286, 12157337] C3 x C69 211) [12157337, 3643, 278528] C3 x C69
11) [17, 5686, 2442457] C3 x C69 207) [2442457, 2843, 1410048] C3 x C69
12) [17, 486, 52249] C3 x C69 150) [52249, 243, 1700] C3 x C69
13) [17, 2530, 1575677] C3 x C69 203) [1575677, 1265, 6137] C3 x C69
14) [37, 2382, 272369] C3 x C69 170) [272369, 1191, 286528] C3 x C69
15) [37, 1002, 250853] C3 x C69 169) [250853, 501, 37] C3 x C69
16) [41, 1426, 405869] C3 x C69 181) [405869, 713, 25625] C3 x C69
17) [41, 531, 69988] C3 x C69 127) [17497, 679, 5904] C3 x C69
18) [41, 1082, 279397] C3 x C69 171) [279397, 541, 3321] C3 x C69
19) [53, 814, 158017] C3 x C69 164) [158017, 407, 1908] C3 x C69
20) [61, 1221, 370133] C3 x C69 180) [370133, 2442, 10309] C3 x C69
21) [61, 2378, 1393957] C3 x C69 202) [1393957, 1189, 4941] C3 x C69
22) [73, 1346, 450301] C3 x C69 184) [450301, 673, 657] C3 x C69
23) [73, 938, 212661] C3 x C69 ---) [23629, 469, 1825] C3 x C483
24) [89, 799, 151568] C3 x C69 107) [9473, 691, 60164] C3 x C69
25) [157, 3382, 2698713] C3 x C69 ---) [299857, 1691, 40192] C3 x C3 x C69
26) [173, 2809, 83417] C3 x C69 157) [83417, 3799, 83732] C3 x C69
27) [181, 4286, 4175425] C3 x C69 ---) [167017, 2143, 104256] C3 x C3 x C69
28) [197, 598, 86249] C3 x C69 158) [86249, 299, 788] C3 x C69
29) [197, 2558, 110273] C3 x C69 160) [110273, 1279, 381392] C3 x C69
30) [229, 905, 163021] C3 x C69 ---) [163021, 1810, 166941] C69
31) [229, 1350, 12281] C3 x C69 ---) [12281, 675, 110836] C759
32) [229, 365, 28669] C3 x C69 139) [28669, 730, 18549] C3 x C69
33) [257, 635, 53968] C3 x C69 ---) [3373, 701, 20817] C69
34) [257, 454, 35081] C3 x C69 ---) [35081, 227, 4112] C483
35) [257, 122, 2693] C3 x C69 ---) [2693, 61, 257] C69
36) [277, 474, 55061] C3 x C69 152) [55061, 237, 277] C3 x C69
37) [281, 2522, 770725] C3 x C69 ---) [30829, 1261, 204849] C3 x C3 x C69
38) [293, 814, 48449] C3 x C69 148) [48449, 407, 29300] C3 x C69
39) [521, 975, 59344] C3 x C69 73) [3709, 1389, 325625] C3 x C69
40) [757, 773, 134053] C3 x C69 162) [134053, 1546, 61317] C3 x C69
41) [761, 151, 3988] C3 x C69 ---) [997, 302, 6849] C69
42) [761, 571, 66100] C3 x C69 ---) [661, 561, 19025] C69
43) [877, 321, 25541] C3 x C69 136) [25541, 642, 877] C3 x C69
44) [937, 2039, 223956] C3 x C69 97) [6221, 1461, 270793] C3 x C69
45) [941, 1513, 7457] C3 x C69 100) [7457, 2371, 1358804] C3 x C69
46) [997, 1937, 70353] C3 x C69 ---) [7817, 2787, 63808] C3 x C345
47) [1181, 1333, 394325] C3 x C69 ---) [15773, 2666, 199589] C3 x C3 x C69
48) [1289, 611, 93008] C3 x C69 94) [5813, 1222, 1289] C3 x C69
49) [1373, 1593, 617593] C3 x C69 ---) [2137, 927, 21968] C69
50) [1373, 1105, 277453] C3 x C69 ---) [2293, 1501, 12357] C69
51) [1489, 571, 36468] C3 x C69 ---) [1013, 1142, 180169] C69
52) [1489, 282, 13925] C3 x C69 ---) [557, 141, 1489] C69
53) [1597, 1321, 435861] C3 x C69 89) [5381, 2642, 1597] C3 x C69
54) [1993, 2535, 1426688] C3 x C69 90) [5573, 2589, 336817] C3 x C69
55) [2089, 1282, 402525] C3 x C69 ---) [1789, 641, 2089] C69
56) [2213, 1181, 2909] C3 x C69 ---) [2909, 2362, 1383125] C69
57) [2309, 986, 159925] C3 x C69 98) [6397, 493, 20781] C3 x C69
58) [2309, 314, 15413] C3 x C69 123) [15413, 157, 2309] C3 x C69
59) [2689, 3583, 2789316] C3 x C69 104) [8609, 4011, 1075600] C3 x C69
60) [2693, 1337, 333113] C3 x C69 62) [2753, 2674, 455117] C3 x C69
61) [2741, 5698, 8018125] C3 x C69 119) [12829, 2849, 24669] C3 x C69
62) [2753, 2674, 455117] C3 x C69 60) [2693, 1337, 333113] C3 x C69
63) [2797, 1521, 577661] C3 x C69 ---) [11789, 3042, 2797] C3 x C3 x C69
64) [2909, 4034, 1450189] C3 x C69 ---) [8581, 2017, 654525] C3 x C3 x C69
65) [2917, 337, 10161] C3 x C69 ---) [1129, 674, 72925] C3 x C207
66) [2953, 831, 47876] C3 x C69 115) [11969, 1662, 499057] C3 x C69
67) [2957, 5933, 17093] C3 x C69 126) [17093, 4597, 4048133] C3 x C69
68) [3229, 234, 773] C3 x C69 ---) [773, 117, 3229] C69
69) [3433, 6563, 193744] C3 x C69 116) [12109, 4481, 415393] C3 x C69
70) [3581, 5354, 5433125] C3 x C69 105) [8693, 2677, 433301] C3 x C69
71) [3701, 3214, 1102049] C3 x C69 99) [6521, 1607, 370100] C3 x C69
72) [3701, 282, 5077] C3 x C69 85) [5077, 141, 3701] C3 x C69
73) [3709, 1389, 325625] C3 x C69 39) [521, 975, 59344] C3 x C69
74) [3761, 2895, 18244] C3 x C69 80) [4561, 2963, 2166336] C3 x C69
75) [4001, 510, 1009] C3 x C69 ---) [1009, 255, 16004] C483
76) [4001, 746, 123125] C3 x C69 ---) [197, 373, 4001] C69
77) [4253, 265, 16493] C3 x C69 125) [16493, 530, 4253] C3 x C69
78) [4481, 655, 16516] C3 x C69 ---) [4129, 1310, 362961] C69
79) [4493, 577, 28193] C3 x C69 ---) [233, 1111, 287552] C69
80) [4561, 2963, 2166336] C3 x C69 74) [3761, 2895, 18244] C3 x C69
81) [4597, 1378, 15021] C3 x C69 ---) [1669, 689, 114925] C69
82) [4637, 2501, 1367837] C3 x C69 83) [4733, 5002, 783653] C3 x C69
83) [4733, 5002, 783653] C3 x C69 82) [4637, 2501, 1367837] C3 x C69
84) [4973, 5282, 1226093] C3 x C69 109) [10133, 2641, 1437197] C3 x C69
85) [5077, 141, 3701] C3 x C69 72) [3701, 282, 5077] C3 x C69
86) [5237, 5285, 5813] C3 x C69 93) [5813, 4061, 633677] C3 x C69
87) [5297, 159, 4996] C3 x C69 ---) [1249, 318, 5297] C69
88) [5333, 369, 709] C3 x C69 ---) [709, 738, 133325] C69
89) [5381, 2642, 1597] C3 x C69 53) [1597, 1321, 435861] C3 x C69
90) [5573, 2589, 336817] C3 x C69 54) [1993, 2535, 1426688] C3 x C69
91) [5741, 2138, 17525] C3 x C69 ---) [701, 1069, 281309] C69
92) [5741, 381, 409] C3 x C69 ---) [409, 762, 143525] C69
93) [5813, 4061, 633677] C3 x C69 86) [5237, 5285, 5813] C3 x C69
94) [5813, 1222, 1289] C3 x C69 48) [1289, 611, 93008] C3 x C69
95) [5857, 6139, 6714432] C3 x C69 113) [11657, 7695, 3959332] C3 x C69
96) [6133, 2669, 111181] C3 x C69 ---) [2269, 2957, 1772437] C69
97) [6221, 1461, 270793] C3 x C69 44) [937, 2039, 223956] C3 x C69
98) [6397, 493, 20781] C3 x C69 57) [2309, 986, 159925] C3 x C69
99) [6521, 1607, 370100] C3 x C69 71) [3701, 3214, 1102049] C3 x C69
100) [7457, 2371, 1358804] C3 x C69 45) [941, 1513, 7457] C3 x C69
101) [7481, 1151, 104900] C3 x C69 ---) [1049, 2302, 905201] C69
102) [7673, 3247, 9668] C3 x C69 ---) [2417, 2875, 1964288] C69
103) [8581, 529, 50653] C3 x C69 ---) [37, 301, 8581] C69
104) [8609, 4011, 1075600] C3 x C69 59) [2689, 3583, 2789316] C3 x C69
105) [8693, 2677, 433301] C3 x C69 70) [3581, 5354, 5433125] C3 x C69
106) [8837, 378, 373] C3 x C69 ---) [373, 189, 8837] C69
107) [9473, 691, 60164] C3 x C69 24) [89, 799, 151568] C3 x C69
108) [10069, 305, 601] C3 x C69 ---) [601, 610, 90621] C69
109) [10133, 2641, 1437197] C3 x C69 84) [4973, 5282, 1226093] C3 x C69
110) [10333, 2669, 641677] C3 x C69 ---) [1213, 2645, 1746277] C69
111) [10949, 577, 14801] C3 x C69 ---) [41, 547, 43796] C69
112) [11317, 2138, 11061] C3 x C69 ---) [1229, 1069, 282925] C3 x C3 x C69
113) [11657, 7695, 3959332] C3 x C69 95) [5857, 6139, 6714432] C3 x C69
114) [11777, 2663, 1110436] C3 x C69 ---) [769, 1707, 188432] C69
115) [11969, 1662, 499057] C3 x C69 66) [2953, 831, 47876] C3 x C69
116) [12109, 4481, 415393] C3 x C69 69) [3433, 6563, 193744] C3 x C69
117) [12401, 2198, 414137] C3 x C69 ---) [1433, 1099, 198416] C69
118) [12577, 1247, 134068] C3 x C69 ---) [277, 1477, 113193] C69
119) [12829, 2849, 24669] C3 x C69 61) [2741, 5698, 8018125] C3 x C69
120) [13577, 2303, 752324] C3 x C69 ---) [521, 1951, 54308] C69
121) [15193, 179, 4212] C3 x C69 ---) [13, 358, 15193] C69
122) [15193, 1331, 135232] C3 x C69 ---) [2113, 2662, 1230633] C69
123) [15413, 157, 2309] C3 x C69 58) [2309, 314, 15413] C3 x C69
124) [16369, 319, 21348] C3 x C69 ---) [593, 638, 16369] C69
125) [16493, 530, 4253] C3 x C69 77) [4253, 265, 16493] C3 x C69
126) [17093, 4597, 4048133] C3 x C69 67) [2957, 5933, 17093] C3 x C69
127) [17497, 679, 5904] C3 x C69 17) [41, 531, 69988] C3 x C69
128) [17581, 1849, 639333] C3 x C69 ---) [877, 3698, 861469] C69
129) [19469, 977, 137] C3 x C69 ---) [137, 1643, 311504] C69
130) [20297, 431, 772] C3 x C69 ---) [193, 862, 182673] C69
131) [20693, 237, 8869] C3 x C69 ---) [181, 474, 20693] C69
132) [21589, 882, 108125] C3 x C69 ---) [173, 441, 21589] C69
133) [21589, 1361, 328149] C3 x C69 ---) [101, 809, 21589] C69
134) [23417, 823, 116644] C3 x C69 ---) [241, 1646, 210753] C69
135) [24413, 626, 317] C3 x C69 ---) [317, 313, 24413] C69
136) [25541, 642, 877] C3 x C69 43) [877, 321, 25541] C3 x C69
137) [27409, 762, 35525] C3 x C69 ---) [29, 381, 27409] C69
138) [28097, 183, 1348] C3 x C69 ---) [337, 366, 28097] C69
139) [28669, 730, 18549] C3 x C69 32) [229, 365, 28669] C3 x C69
140) [29629, 861, 149] C3 x C69 ---) [149, 1722, 740725] C69
141) [34721, 1327, 14900] C3 x C69 ---) [149, 1957, 868025] C69
142) [36469, 413, 33525] C3 x C69 ---) [149, 826, 36469] C69
143) [38261, 1013, 246977] C3 x C69 ---) [257, 2026, 38261] C3 x C3 x C69
144) [38993, 207, 964] C3 x C69 ---) [241, 414, 38993] C69
145) [42953, 623, 388] C3 x C69 ---) [97, 1246, 386577] C69
146) [43961, 715, 116816] C3 x C69 ---) [149, 1430, 43961] C69
147) [45541, 3361, 899973] C3 x C69 ---) [277, 2189, 45541] C69
148) [48449, 407, 29300] C3 x C69 38) [293, 814, 48449] C3 x C69
149) [48481, 1191, 342500] C3 x C69 ---) [137, 2382, 48481] C69
150) [52249, 243, 1700] C3 x C69 12) [17, 486, 52249] C3 x C69
151) [54181, 397, 25857] C3 x C69 ---) [17, 794, 54181] C69
152) [55061, 237, 277] C3 x C69 36) [277, 474, 55061] C3 x C69
153) [66973, 529, 53217] C3 x C69 ---) [73, 1058, 66973] C69
154) [70457, 267, 208] C3 x C69 ---) [13, 534, 70457] C69
155) [77929, 863, 10852] C3 x C69 ---) [2713, 1726, 701361] C3 x C3 x C69
156) [81077, 325, 6137] C3 x C69 ---) [17, 650, 81077] C69
157) [83417, 3799, 83732] C3 x C69 26) [173, 2809, 83417] C3 x C69
158) [86249, 299, 788] C3 x C69 28) [197, 598, 86249] C3 x C69
159) [88897, 335, 5832] C3 x C69 ---) [8, 670, 88897] C69
160) [110273, 1279, 381392] C3 x C69 29) [197, 2558, 110273] C3 x C69
161) [115781, 1169, 81133] C3 x C69 ---) [13, 681, 115781] C69
162) [134053, 1546, 61317] C3 x C69 40) [757, 773, 134053] C3 x C69
163) [143573, 1433, 190333] C3 x C69 ---) [13, 765, 143573] C69
164) [158017, 407, 1908] C3 x C69 19) [53, 814, 158017] C3 x C69
165) [175061, 1481, 154453] C3 x C69 ---) [13, 837, 175061] C69
166) [207721, 467, 2592] C3 x C69 ---) [8, 934, 207721] C69
167) [242521, 499, 1620] C3 x C69 ---) [5, 998, 242521] C69
168) [249421, 529, 7605] C3 x C69 ---) [5, 1058, 249421] C69
169) [250853, 501, 37] C3 x C69 15) [37, 1002, 250853] C3 x C69
170) [272369, 1191, 286528] C3 x C69 14) [37, 2382, 272369] C3 x C69
171) [279397, 541, 3321] C3 x C69 18) [41, 1082, 279397] C3 x C69
172) [280009, 611, 23328] C3 x C69 ---) [8, 1222, 280009] C69
173) [280337, 559, 8036] C3 x C69 ---) [41, 1118, 280337] C69
174) [281989, 597, 18605] C3 x C69 ---) [5, 1181, 281989] C69
175) [301601, 623, 21632] C3 x C69 4) [8, 1246, 301601] C3 x C69
176) [307289, 563, 2420] C3 x C69 ---) [5, 1126, 307289] C69
177) [309769, 643, 25920] C3 x C69 ---) [5, 1209, 309769] C69
178) [362081, 719, 38720] C3 x C69 ---) [5, 1277, 362081] C69
179) [367849, 729, 40898] C3 x C69 ---) [8, 1458, 367849] C69
180) [370133, 2442, 10309] C3 x C69 20) [61, 1221, 370133] C3 x C69
181) [405869, 713, 25625] C3 x C69 16) [41, 1426, 405869] C3 x C69
182) [434221, 689, 10125] C3 x C69 ---) [5, 1378, 434221] C69
183) [449621, 829, 59405] C3 x C69 ---) [5, 1397, 449621] C69
184) [450301, 673, 657] C3 x C69 22) [73, 1346, 450301] C3 x C69
185) [451177, 787, 42048] C3 x C69 ---) [73, 1574, 451177] C69
186) [486329, 707, 3380] C3 x C69 ---) [5, 1414, 486329] C69
187) [519737, 865, 57122] C3 x C69 ---) [8, 1730, 519737] C69
188) [522601, 1651, 550800] C3 x C69 ---) [17, 3103, 2090404] C69
189) [551489, 1247, 250880] C3 x C69 ---) [5, 1501, 551489] C69
190) [556841, 2663, 520000] C3 x C69 8) [13, 2649, 556841] C3 x C69
191) [621701, 1189, 198005] C3 x C69 ---) [5, 1577, 621701] C69
192) [676861, 841, 7605] C3 x C69 ---) [5, 1682, 676861] C69
193) [715621, 853, 2997] C3 x C69 ---) [37, 1706, 715621] C69
194) [727241, 1571, 435200] C3 x C69 ---) [17, 3142, 727241] C69
195) [732521, 889, 14450] C3 x C69 ---) [8, 1778, 732521] C69
196) [749069, 913, 21125] C3 x C69 ---) [5, 1826, 749069] C69
197) [801809, 997, 48050] C3 x C69 6) [8, 1994, 801809] C3 x C69
198) [900937, 1187, 127008] C3 x C69 ---) [8, 2374, 900937] C69
199) [983429, 997, 2645] C3 x C69 ---) [5, 1994, 983429] C69
200) [1019509, 1021, 5733] C3 x C69 ---) [13, 2042, 1019509] C69
201) [1123189, 1437, 235445] C3 x C69 ---) [5, 2141, 1123189] C69
202) [1393957, 1189, 4941] C3 x C69 21) [61, 2378, 1393957] C3 x C69
203) [1575677, 1265, 6137] C3 x C69 13) [17, 2530, 1575677] C3 x C69
204) [1692233, 1315, 9248] C3 x C69 ---) [8, 2630, 1692233] C69
205) [1763381, 1949, 508805] C3 x C69 1) [5, 2657, 1763381] C3 x C69
206) [2349209, 1723, 154880] C3 x C69 2) [5, 3409, 2349209] C3 x C69
207) [2442457, 2843, 1410048] C3 x C69 11) [17, 5686, 2442457] C3 x C69
208) [2631449, 1627, 3920] C3 x C69 3) [5, 3254, 2631449] C3 x C69
209) [5088089, 2267, 12800] C3 x C69 7) [8, 4534, 5088089] C3 x C69
210) [10364201, 3251, 51200] C3 x C69 5) [8, 6502, 10364201] C3 x C69
211) [12157337, 3643, 278528] C3 x C69 10) [17, 7286, 12157337] C3 x C69