A quartic CM field field K is represented by invariants [D,A,B], where
K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real
quadratic subfield (hence A2-4B = m2D for some m).
Class number:
[Non-normal]
[Cyclic]
Class group C3 x C9 non-normal (D4) quartic CM field invariants: 118 fields
K |
Quartic invariants |
Cl(OK) |
Igusa invariants |
Kr |
Reflex invariants |
Cl(OKr) |
Igusa invariants |
1) |
[5, 914, 201629] |
C3 x C9 |
■ |
117) |
[201629, 457, 1805] |
C3 x C9 |
■ |
2) |
[5, 701, 119849] |
C3 x C9 |
■ |
111) |
[119849, 587, 56180] |
C3 x C9 |
■ |
3) |
[5, 1361, 446549] |
C3 x C9 |
■ |
---) |
[446549, 877, 80645] |
C3 x C3 x C9 |
■ |
4) |
[5, 481, 48809] |
C3 x C9 |
■ |
103) |
[48809, 467, 42320] |
C3 x C9 |
■ |
5) |
[5, 841, 173309] |
C3 x C9 |
■ |
115) |
[173309, 697, 78125] |
C3 x C9 |
■ |
6) |
[5, 417, 43321] |
C3 x C9 |
■ |
---) |
[43321, 299, 11520] |
C3 x C3 x C9 |
■ |
7) |
[5, 586, 81349] |
C3 x C9 |
■ |
105) |
[81349, 293, 1125] |
C3 x C9 |
■ |
8) |
[8, 694, 107609] |
C3 x C9 |
■ |
109) |
[107609, 347, 3200] |
C3 x C9 |
■ |
9) |
[8, 754, 99497] |
C3 x C9 |
■ |
108) |
[99497, 377, 10658] |
C3 x C9 |
■ |
10) |
[8, 950, 220217] |
C3 x C9 |
■ |
---) |
[220217, 475, 1352] |
C3 x C3 x C3 x C9 |
■ |
11) |
[8, 742, 133769] |
C3 x C9 |
■ |
---) |
[133769, 371, 968] |
C3 x C3 x C9 |
■ |
12) |
[8, 1090, 159737] |
C3 x C9 |
■ |
---) |
[159737, 545, 34322] |
C3 x C3 x C9 |
■ |
13) |
[8, 886, 119417] |
C3 x C9 |
■ |
110) |
[119417, 443, 19208] |
C3 x C9 |
■ |
14) |
[8, 834, 107641] |
C3 x C9 |
■ |
---) |
[107641, 417, 16562] |
C3 x C9 x C27 |
■ |
15) |
[8, 502, 58393] |
C3 x C9 |
■ |
104) |
[58393, 251, 1152] |
C3 x C9 |
■ |
16) |
[8, 914, 199049] |
C3 x C9 |
■ |
116) |
[199049, 457, 2450] |
C3 x C9 |
■ |
17) |
[13, 881, 92221] |
C3 x C9 |
■ |
106) |
[92221, 697, 98397] |
C3 x C9 |
■ |
18) |
[13, 422, 27673] |
C3 x C9 |
■ |
---) |
[27673, 211, 4212] |
C3 x C3 x C9 |
■ |
19) |
[13, 770, 144013] |
C3 x C9 |
■ |
113) |
[144013, 385, 1053] |
C3 x C9 |
■ |
20) |
[13, 426, 30341] |
C3 x C9 |
■ |
---) |
[30341, 213, 3757] |
C3 x C45 |
■ |
21) |
[13, 818, 144349] |
C3 x C9 |
■ |
114) |
[144349, 409, 5733] |
C3 x C9 |
■ |
22) |
[17, 1134, 92737] |
C3 x C9 |
■ |
107) |
[92737, 567, 57188] |
C3 x C9 |
■ |
23) |
[17, 934, 86441] |
C3 x C9 |
■ |
---) |
[86441, 467, 32912] |
C3 x C3 x C9 |
■ |
24) |
[17, 1270, 219353] |
C3 x C9 |
■ |
118) |
[219353, 635, 45968] |
C3 x C9 |
■ |
25) |
[17, 287, 19636] |
C3 x C9 |
■ |
81) |
[4909, 281, 18513] |
C3 x C9 |
■ |
26) |
[17, 1486, 138337] |
C3 x C9 |
■ |
112) |
[138337, 743, 103428] |
C3 x C9 |
■ |
27) |
[29, 621, 22453] |
C3 x C9 |
■ |
101) |
[22453, 753, 1421] |
C3 x C9 |
■ |
28) |
[29, 277, 10301] |
C3 x C9 |
■ |
---) |
[10301, 554, 35525] |
C3 x C3 x C9 |
■ |
29) |
[37, 713, 125973] |
C3 x C9 |
■ |
93) |
[13997, 365, 1813] |
C3 x C9 |
■ |
30) |
[37, 685, 117297] |
C3 x C9 |
■ |
---) |
[13033, 595, 85248] |
C3 x C117 |
■ |
31) |
[41, 271, 16628] |
C3 x C9 |
■ |
78) |
[4157, 389, 11849] |
C3 x C9 |
■ |
32) |
[53, 250, 5237] |
C3 x C9 |
■ |
82) |
[5237, 125, 2597] |
C3 x C9 |
■ |
33) |
[61, 885, 14621] |
C3 x C9 |
■ |
95) |
[14621, 533, 38125] |
C3 x C9 |
■ |
34) |
[73, 999, 98372] |
C3 x C9 |
■ |
---) |
[24593, 1071, 280612] |
C3 x C45 |
■ |
35) |
[73, 939, 219536] |
C3 x C9 |
■ |
92) |
[13721, 679, 84388] |
C3 x C9 |
■ |
36) |
[73, 471, 53252] |
C3 x C9 |
■ |
---) |
[13313, 942, 8833] |
C3 x C63 |
■ |
37) |
[73, 963, 231824] |
C3 x C9 |
■ |
94) |
[14489, 743, 105412] |
C3 x C9 |
■ |
38) |
[97, 822, 13721] |
C3 x C9 |
■ |
91) |
[13721, 411, 38800] |
C3 x C9 |
■ |
39) |
[101, 677, 101225] |
C3 x C9 |
■ |
77) |
[4049, 407, 40400] |
C3 x C9 |
■ |
40) |
[101, 133, 4397] |
C3 x C9 |
■ |
79) |
[4397, 266, 101] |
C3 x C9 |
■ |
41) |
[113, 1315, 333968] |
C3 x C9 |
■ |
99) |
[20873, 1067, 28928] |
C3 x C9 |
■ |
42) |
[149, 329, 26725] |
C3 x C9 |
■ |
58) |
[1069, 357, 25181] |
C3 x C9 |
■ |
43) |
[173, 117, 2341] |
C3 x C9 |
■ |
67) |
[2341, 234, 4325] |
C3 x C9 |
■ |
44) |
[197, 113, 2749] |
C3 x C9 |
■ |
72) |
[2749, 226, 1773] |
C3 x C9 |
■ |
45) |
[197, 125, 1493] |
C3 x C9 |
■ |
61) |
[1493, 250, 9653] |
C3 x C9 |
■ |
46) |
[197, 673, 104909] |
C3 x C9 |
■ |
65) |
[2141, 353, 4925] |
C3 x C9 |
■ |
47) |
[229, 66, 173] |
C3 x C9 |
■ |
---) |
[173, 33, 229] |
C9 |
■ |
48) |
[257, 66, 61] |
C3 x C9 |
■ |
---) |
[61, 33, 257] |
C9 |
■ |
49) |
[257, 227, 12304] |
C3 x C9 |
■ |
---) |
[769, 454, 2313] |
C9 |
■ |
50) |
[257, 87, 1828] |
C3 x C9 |
■ |
---) |
[457, 174, 257] |
C9 |
■ |
51) |
[317, 89, 1901] |
C3 x C9 |
■ |
---) |
[1901, 178, 317] |
C3 x C3 x C9 |
■ |
52) |
[569, 934, 72425] |
C3 x C9 |
■ |
73) |
[2897, 467, 36416] |
C3 x C9 |
■ |
53) |
[613, 538, 11061] |
C3 x C9 |
■ |
---) |
[1229, 269, 15325] |
C3 x C3 x C9 |
■ |
54) |
[641, 1110, 267001] |
C3 x C9 |
■ |
83) |
[5449, 555, 10256] |
C3 x C9 |
■ |
55) |
[701, 409, 2389] |
C3 x C9 |
■ |
68) |
[2389, 818, 157725] |
C3 x C9 |
■ |
56) |
[761, 143, 356] |
C3 x C9 |
■ |
---) |
[89, 286, 19025] |
C9 |
■ |
57) |
[929, 319, 6628] |
C3 x C9 |
■ |
62) |
[1657, 638, 75249] |
C3 x C9 |
■ |
58) |
[1069, 357, 25181] |
C3 x C9 |
■ |
42) |
[149, 329, 26725] |
C3 x C9 |
■ |
59) |
[1373, 145, 4913] |
C3 x C9 |
■ |
---) |
[17, 151, 5492] |
C9 |
■ |
60) |
[1489, 151, 5328] |
C3 x C9 |
■ |
---) |
[37, 241, 13401] |
C9 |
■ |
61) |
[1493, 250, 9653] |
C3 x C9 |
■ |
45) |
[197, 125, 1493] |
C3 x C9 |
■ |
62) |
[1657, 638, 75249] |
C3 x C9 |
■ |
57) |
[929, 319, 6628] |
C3 x C9 |
■ |
63) |
[1777, 511, 64836] |
C3 x C9 |
■ |
64) |
[1801, 1022, 1777] |
C3 x C9 |
■ |
64) |
[1801, 1022, 1777] |
C3 x C9 |
■ |
63) |
[1777, 511, 64836] |
C3 x C9 |
■ |
65) |
[2141, 353, 4925] |
C3 x C9 |
■ |
46) |
[197, 673, 104909] |
C3 x C9 |
■ |
66) |
[2213, 69, 637] |
C3 x C9 |
■ |
---) |
[13, 138, 2213] |
C9 |
■ |
67) |
[2341, 234, 4325] |
C3 x C9 |
■ |
43) |
[173, 117, 2341] |
C3 x C9 |
■ |
68) |
[2389, 818, 157725] |
C3 x C9 |
■ |
55) |
[701, 409, 2389] |
C3 x C9 |
■ |
69) |
[2557, 258, 6413] |
C3 x C9 |
■ |
---) |
[53, 129, 2557] |
C9 |
■ |
70) |
[2609, 95, 1604] |
C3 x C9 |
■ |
---) |
[401, 190, 2609] |
C3 x C45 |
■ |
71) |
[2677, 61, 261] |
C3 x C9 |
■ |
---) |
[29, 122, 2677] |
C9 |
■ |
72) |
[2749, 226, 1773] |
C3 x C9 |
■ |
44) |
[197, 113, 2749] |
C3 x C9 |
■ |
73) |
[2897, 467, 36416] |
C3 x C9 |
■ |
52) |
[569, 934, 72425] |
C3 x C9 |
■ |
74) |
[3061, 1717, 699525] |
C3 x C9 |
■ |
75) |
[3109, 2897, 76525] |
C3 x C9 |
■ |
75) |
[3109, 2897, 76525] |
C3 x C9 |
■ |
74) |
[3061, 1717, 699525] |
C3 x C9 |
■ |
76) |
[3889, 63, 20] |
C3 x C9 |
■ |
---) |
[5, 126, 3889] |
C9 |
■ |
77) |
[4049, 407, 40400] |
C3 x C9 |
■ |
39) |
[101, 677, 101225] |
C3 x C9 |
■ |
78) |
[4157, 389, 11849] |
C3 x C9 |
■ |
31) |
[41, 271, 16628] |
C3 x C9 |
■ |
79) |
[4397, 266, 101] |
C3 x C9 |
■ |
40) |
[101, 133, 4397] |
C3 x C9 |
■ |
80) |
[4729, 619, 94608] |
C3 x C9 |
■ |
---) |
[73, 359, 18916] |
C9 |
■ |
81) |
[4909, 281, 18513] |
C3 x C9 |
■ |
25) |
[17, 287, 19636] |
C3 x C9 |
■ |
82) |
[5237, 125, 2597] |
C3 x C9 |
■ |
32) |
[53, 250, 5237] |
C3 x C9 |
■ |
83) |
[5449, 555, 10256] |
C3 x C9 |
■ |
54) |
[641, 1110, 267001] |
C3 x C9 |
■ |
84) |
[5477, 241, 2197] |
C3 x C9 |
■ |
---) |
[13, 225, 5477] |
C9 |
■ |
85) |
[5821, 121, 2205] |
C3 x C9 |
■ |
---) |
[5, 153, 5821] |
C9 |
■ |
86) |
[7481, 91, 200] |
C3 x C9 |
■ |
---) |
[8, 182, 7481] |
C9 |
■ |
87) |
[8713, 99, 272] |
C3 x C9 |
■ |
---) |
[17, 198, 8713] |
C9 |
■ |
88) |
[10069, 157, 3645] |
C3 x C9 |
■ |
---) |
[5, 201, 10069] |
C9 |
■ |
89) |
[10457, 283, 17408] |
C3 x C9 |
■ |
---) |
[17, 415, 41828] |
C9 |
■ |
90) |
[12269, 113, 125] |
C3 x C9 |
■ |
---) |
[5, 226, 12269] |
C9 |
■ |
91) |
[13721, 411, 38800] |
C3 x C9 |
■ |
38) |
[97, 822, 13721] |
C3 x C9 |
■ |
92) |
[13721, 679, 84388] |
C3 x C9 |
■ |
35) |
[73, 939, 219536] |
C3 x C9 |
■ |
93) |
[13997, 365, 1813] |
C3 x C9 |
■ |
29) |
[37, 713, 125973] |
C3 x C9 |
■ |
94) |
[14489, 743, 105412] |
C3 x C9 |
■ |
37) |
[73, 963, 231824] |
C3 x C9 |
■ |
95) |
[14621, 533, 38125] |
C3 x C9 |
■ |
33) |
[61, 885, 14621] |
C3 x C9 |
■ |
96) |
[14969, 139, 1088] |
C3 x C9 |
■ |
---) |
[17, 278, 14969] |
C9 |
■ |
97) |
[15349, 173, 3645] |
C3 x C9 |
■ |
---) |
[5, 249, 15349] |
C9 |
■ |
98) |
[15881, 137, 722] |
C3 x C9 |
■ |
---) |
[8, 274, 15881] |
C9 |
■ |
99) |
[20873, 1067, 28928] |
C3 x C9 |
■ |
41) |
[113, 1315, 333968] |
C3 x C9 |
■ |
100) |
[22229, 157, 605] |
C3 x C9 |
■ |
---) |
[5, 314, 22229] |
C9 |
■ |
101) |
[22453, 753, 1421] |
C3 x C9 |
■ |
27) |
[29, 621, 22453] |
C3 x C9 |
■ |
102) |
[24749, 193, 3125] |
C3 x C9 |
■ |
---) |
[5, 329, 24749] |
C9 |
■ |
103) |
[48809, 467, 42320] |
C3 x C9 |
■ |
4) |
[5, 481, 48809] |
C3 x C9 |
■ |
104) |
[58393, 251, 1152] |
C3 x C9 |
■ |
15) |
[8, 502, 58393] |
C3 x C9 |
■ |
105) |
[81349, 293, 1125] |
C3 x C9 |
■ |
7) |
[5, 586, 81349] |
C3 x C9 |
■ |
106) |
[92221, 697, 98397] |
C3 x C9 |
■ |
17) |
[13, 881, 92221] |
C3 x C9 |
■ |
107) |
[92737, 567, 57188] |
C3 x C9 |
■ |
22) |
[17, 1134, 92737] |
C3 x C9 |
■ |
108) |
[99497, 377, 10658] |
C3 x C9 |
■ |
9) |
[8, 754, 99497] |
C3 x C9 |
■ |
109) |
[107609, 347, 3200] |
C3 x C9 |
■ |
8) |
[8, 694, 107609] |
C3 x C9 |
■ |
110) |
[119417, 443, 19208] |
C3 x C9 |
■ |
13) |
[8, 886, 119417] |
C3 x C9 |
■ |
111) |
[119849, 587, 56180] |
C3 x C9 |
■ |
2) |
[5, 701, 119849] |
C3 x C9 |
■ |
112) |
[138337, 743, 103428] |
C3 x C9 |
■ |
26) |
[17, 1486, 138337] |
C3 x C9 |
■ |
113) |
[144013, 385, 1053] |
C3 x C9 |
■ |
19) |
[13, 770, 144013] |
C3 x C9 |
■ |
114) |
[144349, 409, 5733] |
C3 x C9 |
■ |
21) |
[13, 818, 144349] |
C3 x C9 |
■ |
115) |
[173309, 697, 78125] |
C3 x C9 |
■ |
5) |
[5, 841, 173309] |
C3 x C9 |
■ |
116) |
[199049, 457, 2450] |
C3 x C9 |
■ |
16) |
[8, 914, 199049] |
C3 x C9 |
■ |
117) |
[201629, 457, 1805] |
C3 x C9 |
■ |
1) |
[5, 914, 201629] |
C3 x C9 |
■ |
118) |
[219353, 635, 45968] |
C3 x C9 |
■ |
24) |
[17, 1270, 219353] |
C3 x C9 |
■ |