Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C3 x C9 non-normal (D4) quartic CM field invariants: 118 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 914, 201629] C3 x C9 117) [201629, 457, 1805] C3 x C9
2) [5, 701, 119849] C3 x C9 111) [119849, 587, 56180] C3 x C9
3) [5, 1361, 446549] C3 x C9 ---) [446549, 877, 80645] C3 x C3 x C9
4) [5, 481, 48809] C3 x C9 103) [48809, 467, 42320] C3 x C9
5) [5, 841, 173309] C3 x C9 115) [173309, 697, 78125] C3 x C9
6) [5, 417, 43321] C3 x C9 ---) [43321, 299, 11520] C3 x C3 x C9
7) [5, 586, 81349] C3 x C9 105) [81349, 293, 1125] C3 x C9
8) [8, 694, 107609] C3 x C9 109) [107609, 347, 3200] C3 x C9
9) [8, 754, 99497] C3 x C9 108) [99497, 377, 10658] C3 x C9
10) [8, 950, 220217] C3 x C9 ---) [220217, 475, 1352] C3 x C3 x C3 x C9
11) [8, 742, 133769] C3 x C9 ---) [133769, 371, 968] C3 x C3 x C9
12) [8, 1090, 159737] C3 x C9 ---) [159737, 545, 34322] C3 x C3 x C9
13) [8, 886, 119417] C3 x C9 110) [119417, 443, 19208] C3 x C9
14) [8, 834, 107641] C3 x C9 ---) [107641, 417, 16562] C3 x C9 x C27
15) [8, 502, 58393] C3 x C9 104) [58393, 251, 1152] C3 x C9
16) [8, 914, 199049] C3 x C9 116) [199049, 457, 2450] C3 x C9
17) [13, 881, 92221] C3 x C9 106) [92221, 697, 98397] C3 x C9
18) [13, 422, 27673] C3 x C9 ---) [27673, 211, 4212] C3 x C3 x C9
19) [13, 770, 144013] C3 x C9 113) [144013, 385, 1053] C3 x C9
20) [13, 426, 30341] C3 x C9 ---) [30341, 213, 3757] C3 x C45
21) [13, 818, 144349] C3 x C9 114) [144349, 409, 5733] C3 x C9
22) [17, 1134, 92737] C3 x C9 107) [92737, 567, 57188] C3 x C9
23) [17, 934, 86441] C3 x C9 ---) [86441, 467, 32912] C3 x C3 x C9
24) [17, 1270, 219353] C3 x C9 118) [219353, 635, 45968] C3 x C9
25) [17, 287, 19636] C3 x C9 81) [4909, 281, 18513] C3 x C9
26) [17, 1486, 138337] C3 x C9 112) [138337, 743, 103428] C3 x C9
27) [29, 621, 22453] C3 x C9 101) [22453, 753, 1421] C3 x C9
28) [29, 277, 10301] C3 x C9 ---) [10301, 554, 35525] C3 x C3 x C9
29) [37, 713, 125973] C3 x C9 93) [13997, 365, 1813] C3 x C9
30) [37, 685, 117297] C3 x C9 ---) [13033, 595, 85248] C3 x C117
31) [41, 271, 16628] C3 x C9 78) [4157, 389, 11849] C3 x C9
32) [53, 250, 5237] C3 x C9 82) [5237, 125, 2597] C3 x C9
33) [61, 885, 14621] C3 x C9 95) [14621, 533, 38125] C3 x C9
34) [73, 999, 98372] C3 x C9 ---) [24593, 1071, 280612] C3 x C45
35) [73, 939, 219536] C3 x C9 92) [13721, 679, 84388] C3 x C9
36) [73, 471, 53252] C3 x C9 ---) [13313, 942, 8833] C3 x C63
37) [73, 963, 231824] C3 x C9 94) [14489, 743, 105412] C3 x C9
38) [97, 822, 13721] C3 x C9 91) [13721, 411, 38800] C3 x C9
39) [101, 677, 101225] C3 x C9 77) [4049, 407, 40400] C3 x C9
40) [101, 133, 4397] C3 x C9 79) [4397, 266, 101] C3 x C9
41) [113, 1315, 333968] C3 x C9 99) [20873, 1067, 28928] C3 x C9
42) [149, 329, 26725] C3 x C9 58) [1069, 357, 25181] C3 x C9
43) [173, 117, 2341] C3 x C9 67) [2341, 234, 4325] C3 x C9
44) [197, 113, 2749] C3 x C9 72) [2749, 226, 1773] C3 x C9
45) [197, 125, 1493] C3 x C9 61) [1493, 250, 9653] C3 x C9
46) [197, 673, 104909] C3 x C9 65) [2141, 353, 4925] C3 x C9
47) [229, 66, 173] C3 x C9 ---) [173, 33, 229] C9
48) [257, 66, 61] C3 x C9 ---) [61, 33, 257] C9
49) [257, 227, 12304] C3 x C9 ---) [769, 454, 2313] C9
50) [257, 87, 1828] C3 x C9 ---) [457, 174, 257] C9
51) [317, 89, 1901] C3 x C9 ---) [1901, 178, 317] C3 x C3 x C9
52) [569, 934, 72425] C3 x C9 73) [2897, 467, 36416] C3 x C9
53) [613, 538, 11061] C3 x C9 ---) [1229, 269, 15325] C3 x C3 x C9
54) [641, 1110, 267001] C3 x C9 83) [5449, 555, 10256] C3 x C9
55) [701, 409, 2389] C3 x C9 68) [2389, 818, 157725] C3 x C9
56) [761, 143, 356] C3 x C9 ---) [89, 286, 19025] C9
57) [929, 319, 6628] C3 x C9 62) [1657, 638, 75249] C3 x C9
58) [1069, 357, 25181] C3 x C9 42) [149, 329, 26725] C3 x C9
59) [1373, 145, 4913] C3 x C9 ---) [17, 151, 5492] C9
60) [1489, 151, 5328] C3 x C9 ---) [37, 241, 13401] C9
61) [1493, 250, 9653] C3 x C9 45) [197, 125, 1493] C3 x C9
62) [1657, 638, 75249] C3 x C9 57) [929, 319, 6628] C3 x C9
63) [1777, 511, 64836] C3 x C9 64) [1801, 1022, 1777] C3 x C9
64) [1801, 1022, 1777] C3 x C9 63) [1777, 511, 64836] C3 x C9
65) [2141, 353, 4925] C3 x C9 46) [197, 673, 104909] C3 x C9
66) [2213, 69, 637] C3 x C9 ---) [13, 138, 2213] C9
67) [2341, 234, 4325] C3 x C9 43) [173, 117, 2341] C3 x C9
68) [2389, 818, 157725] C3 x C9 55) [701, 409, 2389] C3 x C9
69) [2557, 258, 6413] C3 x C9 ---) [53, 129, 2557] C9
70) [2609, 95, 1604] C3 x C9 ---) [401, 190, 2609] C3 x C45
71) [2677, 61, 261] C3 x C9 ---) [29, 122, 2677] C9
72) [2749, 226, 1773] C3 x C9 44) [197, 113, 2749] C3 x C9
73) [2897, 467, 36416] C3 x C9 52) [569, 934, 72425] C3 x C9
74) [3061, 1717, 699525] C3 x C9 75) [3109, 2897, 76525] C3 x C9
75) [3109, 2897, 76525] C3 x C9 74) [3061, 1717, 699525] C3 x C9
76) [3889, 63, 20] C3 x C9 ---) [5, 126, 3889] C9
77) [4049, 407, 40400] C3 x C9 39) [101, 677, 101225] C3 x C9
78) [4157, 389, 11849] C3 x C9 31) [41, 271, 16628] C3 x C9
79) [4397, 266, 101] C3 x C9 40) [101, 133, 4397] C3 x C9
80) [4729, 619, 94608] C3 x C9 ---) [73, 359, 18916] C9
81) [4909, 281, 18513] C3 x C9 25) [17, 287, 19636] C3 x C9
82) [5237, 125, 2597] C3 x C9 32) [53, 250, 5237] C3 x C9
83) [5449, 555, 10256] C3 x C9 54) [641, 1110, 267001] C3 x C9
84) [5477, 241, 2197] C3 x C9 ---) [13, 225, 5477] C9
85) [5821, 121, 2205] C3 x C9 ---) [5, 153, 5821] C9
86) [7481, 91, 200] C3 x C9 ---) [8, 182, 7481] C9
87) [8713, 99, 272] C3 x C9 ---) [17, 198, 8713] C9
88) [10069, 157, 3645] C3 x C9 ---) [5, 201, 10069] C9
89) [10457, 283, 17408] C3 x C9 ---) [17, 415, 41828] C9
90) [12269, 113, 125] C3 x C9 ---) [5, 226, 12269] C9
91) [13721, 411, 38800] C3 x C9 38) [97, 822, 13721] C3 x C9
92) [13721, 679, 84388] C3 x C9 35) [73, 939, 219536] C3 x C9
93) [13997, 365, 1813] C3 x C9 29) [37, 713, 125973] C3 x C9
94) [14489, 743, 105412] C3 x C9 37) [73, 963, 231824] C3 x C9
95) [14621, 533, 38125] C3 x C9 33) [61, 885, 14621] C3 x C9
96) [14969, 139, 1088] C3 x C9 ---) [17, 278, 14969] C9
97) [15349, 173, 3645] C3 x C9 ---) [5, 249, 15349] C9
98) [15881, 137, 722] C3 x C9 ---) [8, 274, 15881] C9
99) [20873, 1067, 28928] C3 x C9 41) [113, 1315, 333968] C3 x C9
100) [22229, 157, 605] C3 x C9 ---) [5, 314, 22229] C9
101) [22453, 753, 1421] C3 x C9 27) [29, 621, 22453] C3 x C9
102) [24749, 193, 3125] C3 x C9 ---) [5, 329, 24749] C9
103) [48809, 467, 42320] C3 x C9 4) [5, 481, 48809] C3 x C9
104) [58393, 251, 1152] C3 x C9 15) [8, 502, 58393] C3 x C9
105) [81349, 293, 1125] C3 x C9 7) [5, 586, 81349] C3 x C9
106) [92221, 697, 98397] C3 x C9 17) [13, 881, 92221] C3 x C9
107) [92737, 567, 57188] C3 x C9 22) [17, 1134, 92737] C3 x C9
108) [99497, 377, 10658] C3 x C9 9) [8, 754, 99497] C3 x C9
109) [107609, 347, 3200] C3 x C9 8) [8, 694, 107609] C3 x C9
110) [119417, 443, 19208] C3 x C9 13) [8, 886, 119417] C3 x C9
111) [119849, 587, 56180] C3 x C9 2) [5, 701, 119849] C3 x C9
112) [138337, 743, 103428] C3 x C9 26) [17, 1486, 138337] C3 x C9
113) [144013, 385, 1053] C3 x C9 19) [13, 770, 144013] C3 x C9
114) [144349, 409, 5733] C3 x C9 21) [13, 818, 144349] C3 x C9
115) [173309, 697, 78125] C3 x C9 5) [5, 841, 173309] C3 x C9
116) [199049, 457, 2450] C3 x C9 16) [8, 914, 199049] C3 x C9
117) [201629, 457, 1805] C3 x C9 1) [5, 914, 201629] C3 x C9
118) [219353, 635, 45968] C3 x C9 24) [17, 1270, 219353] C3 x C9