Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C5 x C115 non-normal (D4) quartic CM field invariants: 41 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [8, 6302, 8323169] C5 x C115 40) [8323169, 3151, 401408] C5 x C115
2) [8, 9814, 23705401] C5 x C115 ---) [23705401, 4907, 93312] C5 x C5 x C115
3) [13, 9206, 20708377] C5 x C115 41) [20708377, 4603, 119808] C5 x C115
4) [401, 5590, 7401401] C5 x C115 ---) [151049, 2795, 102656] C1035
5) [401, 4726, 2478425] C5 x C115 32) [99137, 2363, 776336] C5 x C115
6) [1093, 1301, 7537] C5 x C115 ---) [7537, 2602, 1662453] C345
7) [1093, 93, 1889] C5 x C115 ---) [1889, 186, 1093] C115
8) [1093, 857, 84969] C5 x C115 ---) [1049, 699, 109300] C115
9) [1193, 3319, 2646272] C5 x C115 21) [10337, 2939, 1722692] C5 x C115
10) [1429, 1741, 654525] C5 x C115 ---) [2909, 1273, 241501] C115
11) [2113, 1114, 301797] C5 x C115 29) [33533, 557, 2113] C5 x C115
12) [2153, 4535, 3267908] C5 x C115 ---) [16673, 5003, 551168] C345
13) [2617, 4791, 4842752] C5 x C115 28) [18917, 5365, 2617] C5 x C115
14) [3181, 829, 37413] C5 x C115 ---) [4157, 1658, 537589] C115
15) [3253, 2589, 894197] C5 x C115 ---) [2477, 1845, 3253] C115
16) [4889, 2363, 64912] C5 x C115 ---) [4057, 4227, 3832976] C115
17) [5153, 4379, 2185204] C5 x C115 22) [11149, 8441, 417393] C5 x C115
18) [5701, 8202, 16795397] C5 x C115 ---) [17477, 4101, 5701] C5 x C345
19) [6113, 2771, 47504] C5 x C115 ---) [2969, 3659, 1564928] C115
20) [8501, 1450, 491621] C5 x C115 ---) [2909, 725, 8501] C115
21) [10337, 2939, 1722692] C5 x C115 9) [1193, 3319, 2646272] C5 x C115
22) [11149, 8441, 417393] C5 x C115 17) [5153, 4379, 2185204] C5 x C115
23) [15473, 498, 109] C5 x C115 ---) [109, 249, 15473] C115
24) [17033, 163, 2384] C5 x C115 ---) [149, 326, 17033] C115
25) [18253, 2677, 1020393] C5 x C115 ---) [937, 3223, 657108] C115
26) [18253, 2161, 1162917] C5 x C115 ---) [293, 1245, 18253] C115
27) [18433, 1850, 781893] C5 x C115 ---) [197, 925, 18433] C115
28) [18917, 5365, 2617] C5 x C115 13) [2617, 4791, 4842752] C5 x C115
29) [33533, 557, 2113] C5 x C115 11) [2113, 1114, 301797] C5 x C115
30) [33797, 2417, 32549] C5 x C115 ---) [269, 2093, 844925] C115
31) [83389, 321, 4913] C5 x C115 ---) [17, 642, 83389] C115
32) [99137, 2363, 776336] C5 x C115 5) [401, 4726, 2478425] C5 x C115
33) [170497, 413, 18] C5 x C115 ---) [8, 826, 170497] C115
34) [269041, 519, 80] C5 x C115 ---) [5, 1038, 269041] C115
35) [724609, 1727, 564480] C5 x C115 ---) [5, 1821, 724609] C115
36) [1028569, 1041, 13778] C5 x C115 ---) [8, 2082, 1028569] C115
37) [1128181, 1069, 3645] C5 x C115 ---) [5, 2138, 1128181] C115
38) [1857593, 1451, 61952] C5 x C115 ---) [8, 2902, 1857593] C115
39) [2019881, 1459, 27200] C5 x C115 ---) [17, 2918, 2019881] C115
40) [8323169, 3151, 401408] C5 x C115 1) [8, 6302, 8323169] C5 x C115
41) [20708377, 4603, 119808] C5 x C115 3) [13, 9206, 20708377] C5 x C115