Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C5 x C145 non-normal (D4) quartic CM field invariants: 28 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [8, 8366, 16870289] C5 x C145 28) [16870289, 4183, 156800] C5 x C145
2) [149, 1757, 763381] C5 x C145 22) [763381, 3514, 33525] C5 x C145
3) [401, 1462, 123737] C5 x C145 ---) [123737, 731, 102656] C145
4) [1093, 1009, 55321] C5 x C145 ---) [1129, 967, 109300] C1305
5) [1429, 578, 32077] C5 x C145 ---) [32077, 289, 12861] C145
6) [5813, 6981, 11763601] C5 x C145 10) [12241, 5491, 3348288] C5 x C145
7) [7817, 1619, 90512] C5 x C145 ---) [5657, 3238, 2259113] C145
8) [9829, 2069, 517309] C5 x C145 ---) [3061, 4138, 2211525] C145
9) [11273, 3523, 33808] C5 x C145 ---) [2113, 3435, 2885888] C145
10) [12241, 5491, 3348288] C5 x C145 6) [5813, 6981, 11763601] C5 x C145
11) [12301, 201, 7025] C5 x C145 ---) [281, 402, 12301] C145
12) [13229, 273, 15325] C5 x C145 ---) [613, 546, 13229] C145
13) [30893, 874, 67397] C5 x C145 ---) [557, 437, 30893] C145
14) [35933, 2237, 1026461] C5 x C145 ---) [149, 1933, 898325] C145
15) [63697, 1018, 4293] C5 x C145 ---) [53, 509, 63697] C145
16) [67589, 1106, 35453] C5 x C145 ---) [293, 553, 67589] C145
17) [133717, 1466, 2421] C5 x C145 ---) [269, 733, 133717] C145
18) [202289, 469, 4418] C5 x C145 ---) [8, 938, 202289] C145
19) [431521, 1039, 162000] C5 x C145 ---) [5, 1317, 431521] C145
20) [468821, 685, 101] C5 x C145 ---) [101, 1370, 468821] C145
21) [597521, 773, 2] C5 x C145 ---) [8, 1546, 597521] C145
22) [763381, 3514, 33525] C5 x C145 2) [149, 1757, 763381] C5 x C145
23) [1390969, 1187, 4500] C5 x C145 ---) [5, 2374, 1390969] C145
24) [1687633, 1399, 67392] C5 x C145 ---) [13, 2798, 1687633] C145
25) [2342633, 1619, 69632] C5 x C145 ---) [17, 3238, 2342633] C145
26) [4068041, 2083, 67712] C5 x C145 ---) [8, 4166, 4068041] C145
27) [5383529, 2323, 3200] C5 x C145 ---) [8, 4646, 5383529] C145
28) [16870289, 4183, 156800] C5 x C145 1) [8, 8366, 16870289] C5 x C145