Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C5 x C15 non-normal (D4) quartic CM field invariants: 83 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 1821, 825229] C5 x C15 82) [825229, 1297, 214245] C5 x C15
2) [5, 1921, 922549] C5 x C15 83) [922549, 1437, 285605] C5 x C15
3) [5, 757, 136601] C5 x C15 74) [136601, 659, 74420] C5 x C15
4) [5, 1198, 353681] C5 x C15 77) [353681, 599, 1280] C5 x C15
5) [8, 2418, 820969] C5 x C15 81) [820969, 1209, 160178] C5 x C15
6) [8, 1330, 421417] C5 x C15 79) [421417, 665, 5202] C5 x C15
7) [8, 1282, 406649] C5 x C15 78) [406649, 641, 1058] C5 x C15
8) [8, 1238, 282809] C5 x C15 76) [282809, 619, 25088] C5 x C15
9) [8, 542, 48353] C5 x C15 67) [48353, 271, 6272] C5 x C15
10) [13, 1514, 467749] C5 x C15 80) [467749, 757, 26325] C5 x C15
11) [13, 978, 189149] C5 x C15 75) [189149, 489, 12493] C5 x C15
12) [17, 586, 85781] C5 x C15 69) [85781, 293, 17] C5 x C15
13) [17, 794, 83557] C5 x C15 68) [83557, 397, 18513] C5 x C15
14) [17, 898, 75869] C5 x C15 ---) [75869, 449, 31433] C15 x C15
15) [17, 831, 163252] C5 x C15 66) [40813, 825, 159953] C5 x C15
16) [29, 1106, 110813] C5 x C15 72) [110813, 553, 48749] C5 x C15
17) [53, 654, 22129] C5 x C15 ---) [22129, 327, 21200] C5 x C165
18) [89, 1399, 431428] C5 x C15 71) [107857, 2798, 231489] C5 x C15
19) [137, 1247, 152804] C5 x C15 64) [38201, 2099, 633488] C5 x C15
20) [149, 1714, 633725] C5 x C15 60) [25349, 857, 25181] C5 x C15
21) [277, 1006, 182097] C5 x C15 57) [20233, 503, 17728] C5 x C15
22) [401, 90, 421] C5 x C15 ---) [421, 45, 401] C15
23) [401, 175, 7556] C5 x C15 ---) [1889, 350, 401] C15
24) [401, 151, 788] C5 x C15 ---) [197, 289, 19649] C15
25) [541, 225, 6029] C5 x C15 46) [6029, 450, 26509] C5 x C15
26) [653, 1490, 238973] C5 x C15 42) [4877, 745, 79013] C5 x C15
27) [701, 1409, 403613] C5 x C15 48) [8237, 2441, 202589] C5 x C15
28) [709, 826, 167733] C5 x C15 55) [18637, 413, 709] C5 x C15
29) [929, 999, 26308] C5 x C15 47) [6577, 1998, 892769] C5 x C15
30) [977, 614, 31721] C5 x C15 62) [31721, 307, 15632] C5 x C15
31) [1093, 818, 127933] C5 x C15 ---) [757, 409, 9837] C15
32) [1433, 283, 19664] C5 x C15 ---) [1229, 566, 1433] C15 x C15
33) [1613, 97, 1949] C5 x C15 34) [1949, 194, 1613] C5 x C15
34) [1949, 194, 1613] C5 x C15 33) [1613, 97, 1949] C5 x C15
35) [2017, 947, 219664] C5 x C15 52) [13729, 1894, 18153] C5 x C15
36) [2081, 179, 3328] C5 x C15 ---) [13, 93, 2081] C15
37) [2221, 1354, 23013] C5 x C15 ---) [2557, 677, 108829] C15 x C15
38) [2393, 1447, 20324] C5 x C15 ---) [5081, 2894, 2012513] C15 x C15
39) [3121, 462, 3425] C5 x C15 ---) [137, 231, 12484] C15
40) [3881, 2566, 652553] C5 x C15 45) [5393, 1283, 248384] C5 x C15
41) [4337, 1279, 407876] C5 x C15 ---) [2081, 2558, 4337] C5 x C5 x C15
42) [4877, 745, 79013] C5 x C15 26) [653, 1490, 238973] C5 x C15
43) [4993, 2270, 569233] C5 x C15 51) [11617, 1135, 179748] C5 x C15
44) [5333, 449, 17069] C5 x C15 ---) [101, 689, 5333] C5 x C5
45) [5393, 1283, 248384] C5 x C15 40) [3881, 2566, 652553] C5 x C15
46) [6029, 450, 26509] C5 x C15 25) [541, 225, 6029] C5 x C15
47) [6577, 1998, 892769] C5 x C15 29) [929, 999, 26308] C5 x C15
48) [8237, 2441, 202589] C5 x C15 27) [701, 1409, 403613] C5 x C15
49) [8501, 205, 8381] C5 x C15 ---) [29, 410, 8501] C15
50) [10613, 157, 3509] C5 x C15 ---) [29, 314, 10613] C15
51) [11617, 1135, 179748] C5 x C15 43) [4993, 2270, 569233] C5 x C15
52) [13729, 1894, 18153] C5 x C15 35) [2017, 947, 219664] C5 x C15
53) [14281, 431, 14308] C5 x C15 ---) [73, 862, 128529] C15
54) [15473, 127, 164] C5 x C15 ---) [41, 254, 15473] C15
55) [18637, 413, 709] C5 x C15 28) [709, 826, 167733] C5 x C15
56) [20089, 161, 1458] C5 x C15 ---) [8, 322, 20089] C15
57) [20233, 503, 17728] C5 x C15 21) [277, 1006, 182097] C5 x C15
58) [23801, 193, 3362] C5 x C15 ---) [8, 386, 23801] C15
59) [23801, 203, 4352] C5 x C15 ---) [17, 406, 23801] C15
60) [25349, 857, 25181] C5 x C15 20) [149, 1714, 633725] C5 x C15
61) [30341, 181, 605] C5 x C15 ---) [5, 362, 30341] C15
62) [31721, 307, 15632] C5 x C15 30) [977, 614, 31721] C5 x C15
63) [35509, 317, 16245] C5 x C15 ---) [5, 381, 35509] C15
64) [38201, 2099, 633488] C5 x C15 19) [137, 1247, 152804] C5 x C15
65) [38629, 197, 45] C5 x C15 ---) [5, 394, 38629] C15
66) [40813, 825, 159953] C5 x C15 15) [17, 831, 163252] C5 x C15
67) [48353, 271, 6272] C5 x C15 9) [8, 542, 48353] C5 x C15
68) [83557, 397, 18513] C5 x C15 13) [17, 794, 83557] C5 x C15
69) [85781, 293, 17] C5 x C15 12) [17, 586, 85781] C5 x C15
70) [87629, 353, 9245] C5 x C15 ---) [5, 629, 87629] C15
71) [107857, 2798, 231489] C5 x C15 18) [89, 1399, 431428] C5 x C15
72) [110813, 553, 48749] C5 x C15 16) [29, 1106, 110813] C5 x C15
73) [122273, 1159, 305252] C5 x C15 ---) [17, 1399, 489092] C5 x C5
74) [136601, 659, 74420] C5 x C15 3) [5, 757, 136601] C5 x C15
75) [189149, 489, 12493] C5 x C15 11) [13, 978, 189149] C5 x C15
76) [282809, 619, 25088] C5 x C15 8) [8, 1238, 282809] C5 x C15
77) [353681, 599, 1280] C5 x C15 4) [5, 1198, 353681] C5 x C15
78) [406649, 641, 1058] C5 x C15 7) [8, 1282, 406649] C5 x C15
79) [421417, 665, 5202] C5 x C15 6) [8, 1330, 421417] C5 x C15
80) [467749, 757, 26325] C5 x C15 10) [13, 1514, 467749] C5 x C15
81) [820969, 1209, 160178] C5 x C15 5) [8, 2418, 820969] C5 x C15
82) [825229, 1297, 214245] C5 x C15 1) [5, 1821, 825229] C5 x C15
83) [922549, 1437, 285605] C5 x C15 2) [5, 1921, 922549] C5 x C15