Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C5 x C155 non-normal (D4) quartic CM field invariants: 26 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [37, 4206, 4363409] C5 x C155 ---) [4363409, 2103, 14800] C5 x C1085
2) [1429, 694, 28953] C5 x C155 ---) [3217, 347, 22864] C155
3) [2153, 622, 62273] C5 x C155 ---) [62273, 311, 8612] C155
4) [3181, 258, 3917] C5 x C155 ---) [3917, 129, 3181] C155
5) [4441, 3223, 2409300] C5 x C155 ---) [2677, 1921, 359721] C465
6) [4441, 1938, 68525] C5 x C155 ---) [2741, 969, 217609] C155
7) [5869, 3653, 2806425] C5 x C155 17) [12473, 7306, 2118709] C5 x C155
8) [6481, 1319, 303700] C5 x C155 ---) [3037, 2638, 524961] C155
9) [6949, 1545, 303161] C5 x C155 ---) [1049, 2519, 111184] C155
10) [6949, 1778, 762525] C5 x C155 ---) [3389, 889, 6949] C155
11) [6949, 3177, 2313125] C5 x C155 ---) [3701, 4737, 4343125] C155
12) [7229, 1426, 479453] C5 x C155 ---) [2837, 713, 7229] C155
13) [7229, 273, 16825] C5 x C155 ---) [673, 546, 7229] C155
14) [8501, 4330, 572741] C5 x C155 ---) [3389, 2165, 1028621] C155
15) [8501, 1586, 322813] C5 x C155 ---) [1117, 793, 76509] C155
16) [10909, 2425, 27441] C5 x C155 ---) [3049, 4850, 5770861] C155
17) [12473, 7306, 2118709] C5 x C155 7) [5869, 3653, 2806425] C5 x C155
18) [16001, 1207, 40192] C5 x C155 ---) [157, 1389, 16001] C155
19) [17033, 1459, 187252] C5 x C155 ---) [277, 1705, 153297] C155
20) [27749, 557, 70625] C5 x C155 ---) [113, 1114, 27749] C155
21) [30341, 2182, 704825] C5 x C155 ---) [233, 1091, 121364] C155
22) [33029, 381, 28033] C5 x C155 ---) [97, 762, 33029] C155
23) [130477, 369, 1421] C5 x C155 ---) [29, 738, 130477] C155
24) [181981, 433, 1377] C5 x C155 ---) [17, 866, 181981] C155
25) [3330617, 1825, 2] C5 x C155 ---) [8, 3650, 3330617] C155
26) [4364873, 2195, 113288] C5 x C155 ---) [8, 4390, 4364873] C155