Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C5 x C160 non-normal (D4) quartic CM field invariants: 146 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [12, 2686, 1511617] C5 x C160 ---) [1511617, 1343, 73008] C5 x C480
2) [33, 1614, 516081] C5 x C160 ---) [516081, 807, 33792] C10 x C80
3) [73, 1525, 553648] C5 x C160 97) [138412, 3050, 111033] C5 x C160
4) [141, 1108, 21391] C5 x C160 ---) [85564, 2216, 1142100] C10 x C80
5) [401, 555, 74500] C5 x C160 ---) [745, 307, 14436] C2 x C160
6) [401, 253, 15902] C5 x C160 ---) [63608, 506, 401] C160
7) [401, 567, 17716] C5 x C160 ---) [4429, 1134, 250625] C160
8) [401, 437, 25186] C5 x C160 ---) [2056, 874, 90225] C4 x C160
9) [401, 1131, 196984] C5 x C160 108) [196984, 2262, 491225] C5 x C160
10) [401, 1211, 282320] C5 x C160 ---) [17645, 2422, 337241] C2 x C320
11) [413, 990, 139297] C5 x C160 99) [139297, 495, 26432] C5 x C160
12) [829, 3037, 107127] C5 x C160 73) [47612, 6074, 8794861] C5 x C160
13) [1093, 212, 1399] C5 x C160 ---) [5596, 424, 39348] C160
14) [1093, 605, 30025] C5 x C160 ---) [1201, 1210, 245925] C2 x C80
15) [1153, 606, 18017] C5 x C160 54) [18017, 303, 18448] C5 x C160
16) [1181, 5822, 8455025] C5 x C160 125) [338201, 2911, 4724] C5 x C160
17) [1237, 2106, 272597] C5 x C160 ---) [1613, 1053, 209053] C10 x C80
18) [1756, 842, 103050] C5 x C160 ---) [1832, 558, 439] C2 x C160
19) [1756, 2270, 8101] C5 x C160 ---) [8101, 1135, 320031] C2080
20) [1756, 1654, 50013] C5 x C160 ---) [5557, 827, 158479] C160
21) [1897, 563, 78768] C5 x C160 ---) [2188, 1126, 1897] C2 x C80
22) [1897, 1537, 578736] C5 x C160 ---) [16076, 3074, 47425] C2 x C80
23) [1897, 1557, 594206] C5 x C160 ---) [6584, 3114, 47425] C2 x C240
24) [1897, 3139, 1324656] C5 x C160 ---) [36796, 6278, 4554697] C2 x C80
25) [1897, 910, 85617] C5 x C160 ---) [1057, 455, 30352] C2 x C80
26) [1996, 930, 208241] C5 x C160 ---) [1721, 465, 1996] C160
27) [2081, 664, 108143] C5 x C160 ---) [8828, 1328, 8324] C480
28) [2153, 983, 4204] C5 x C160 ---) [4204, 1966, 949473] C160
29) [2908, 1256, 42516] C5 x C160 ---) [1181, 628, 87967] C160
30) [2908, 2096, 606852] C5 x C160 ---) [1873, 1048, 122863] C160
31) [3121, 1499, 280080] C5 x C160 ---) [1945, 2687, 112356] C2 x C160
32) [3181, 2858, 502437] C5 x C160 ---) [2973, 1429, 384901] C160
33) [3761, 2423, 37612] C5 x C160 65) [37612, 4846, 5720481] C5 x C160
34) [4441, 2065, 132336] C5 x C160 ---) [3676, 4130, 3734881] C160
35) [4757, 316, 20207] C5 x C160 ---) [668, 632, 19028] C2 x C80
36) [5308, 3944, 19252] C5 x C160 ---) [4813, 1972, 967383] C160
37) [5308, 358, 10809] C5 x C160 ---) [1201, 179, 5308] C160
38) [6481, 719, 127620] C5 x C160 ---) [3545, 1438, 6481] C2 x C320
39) [6481, 487, 57672] C5 x C160 ---) [712, 974, 6481] C2 x C160
40) [7621, 1687, 23697] C5 x C160 ---) [2633, 3374, 2751181] C10 x C80
41) [8501, 477, 3751] C5 x C160 ---) [124, 954, 212525] C160
42) [9553, 594, 49997] C5 x C160 ---) [173, 297, 9553] C80
43) [9596, 1490, 84821] C5 x C160 ---) [701, 745, 117551] C160
44) [9757, 107, 423] C5 x C160 ---) [188, 214, 9757] C2 x C80
45) [9829, 626, 58653] C5 x C160 ---) [133, 313, 9829] C160
46) [10408, 1042, 11241] C5 x C160 ---) [1249, 521, 65050] C80
47) [10408, 4066, 3872889] C5 x C160 ---) [1489, 2033, 65050] C240
48) [10613, 1193, 353159] C5 x C160 ---) [764, 2386, 10613] C160
49) [10709, 1547, 595625] C5 x C160 ---) [953, 3094, 10709] C10 x C80
50) [12101, 2745, 1517701] C5 x C160 ---) [2869, 5490, 1464221] C160
51) [12536, 634, 22139] C5 x C160 ---) [524, 1268, 313400] C2 x C80
52) [13004, 462, 1345] C5 x C160 ---) [1345, 231, 13004] C4 x C240
53) [17084, 1050, 2281] C5 x C160 ---) [2281, 525, 68336] C160
54) [18017, 303, 18448] C5 x C160 15) [1153, 606, 18017] C5 x C160
55) [18433, 143, 504] C5 x C160 ---) [56, 286, 18433] C160
56) [18773, 727, 14801] C5 x C160 ---) [41, 673, 75092] C2 x C80
57) [19477, 629, 94041] C5 x C160 ---) [129, 1258, 19477] C160
58) [20389, 292, 927] C5 x C160 ---) [412, 584, 81556] C160
59) [22108, 1184, 151492] C5 x C160 ---) [313, 592, 49743] C160
60) [22844, 204, 4693] C5 x C160 ---) [13, 408, 22844] C160
61) [23096, 328, 3800] C5 x C160 ---) [152, 164, 5774] C2 x C80
62) [23708, 778, 3146] C5 x C160 ---) [104, 562, 5927] C2 x C160
63) [25269, 801, 2469] C5 x C160 ---) [2469, 1602, 631725] C2 x C80
64) [33029, 1722, 609205] C5 x C160 ---) [445, 861, 33029] C2 x C320
65) [37612, 4846, 5720481] C5 x C160 33) [3761, 2423, 37612] C5 x C160
66) [37724, 6688, 280100] C5 x C160 ---) [2801, 3344, 2725559] C160
67) [38173, 201, 557] C5 x C160 ---) [557, 402, 38173] C160
68) [39085, 1042, 115101] C5 x C160 ---) [29, 521, 39085] C80
69) [41777, 1292, 41323] C5 x C160 ---) [172, 2584, 1503972] C160
70) [43233, 231, 2532] C5 x C160 ---) [633, 462, 43233] C2 x C80
71) [43388, 2134, 53789] C5 x C160 ---) [149, 1067, 271175] C160
72) [46117, 432, 539] C5 x C160 ---) [44, 864, 184468] C2 x C80
73) [47612, 6074, 8794861] C5 x C160 12) [829, 3037, 107127] C5 x C160
74) [50936, 228, 262] C5 x C160 ---) [1048, 456, 50936] C10 x C80
75) [50969, 381, 23548] C5 x C160 ---) [28, 762, 50969] C160
76) [52684, 12226, 36525825] C5 x C160 ---) [3313, 6113, 210736] C160
77) [52684, 4758, 4816697] C5 x C160 ---) [1073, 2379, 210736] C2 x C160
78) [53441, 1010, 41261] C5 x C160 ---) [341, 505, 53441] C160
79) [53993, 243, 1264] C5 x C160 ---) [316, 486, 53993] C480
80) [54373, 508, 10143] C5 x C160 ---) [92, 1016, 217492] C2 x C80
81) [54573, 630, 44652] C5 x C160 ---) [12, 528, 54573] C2 x C80
82) [59973, 1306, 186517] C5 x C160 ---) [37, 653, 59973] C160
83) [63697, 1102, 239904] C5 x C160 ---) [136, 2204, 254788] C2 x C160
84) [64444, 1018, 1305] C5 x C160 ---) [145, 509, 64444] C4 x C160
85) [67985, 983, 224576] C5 x C160 ---) [29, 1021, 67985] C80
86) [69304, 794, 1675] C5 x C160 ---) [268, 1588, 623736] C2 x C80
87) [81449, 851, 160688] C5 x C160 ---) [332, 1702, 81449] C2 x C80
88) [84652, 584, 612] C5 x C160 ---) [17, 292, 21163] C160
89) [95768, 1186, 255881] C5 x C160 ---) [41, 593, 23942] C160
90) [101373, 858, 82668] C5 x C160 ---) [12, 720, 101373] C2 x C80
91) [109253, 559, 50807] C5 x C160 ---) [92, 1118, 109253] C160
92) [121213, 1706, 242757] C5 x C160 ---) [37, 853, 121213] C160
93) [127717, 1528, 72828] C5 x C160 ---) [28, 764, 127717] C160
94) [127801, 523, 36432] C5 x C160 ---) [253, 1046, 127801] C2 x C80
95) [127937, 359, 236] C5 x C160 ---) [236, 718, 127937] C2 x C80
96) [135349, 389, 3993] C5 x C160 ---) [33, 778, 135349] C160
97) [138412, 3050, 111033] C5 x C160 3) [73, 1525, 553648] C5 x C160
98) [139081, 493, 25992] C5 x C160 ---) [8, 986, 139081] C2 x C80
99) [139297, 495, 26432] C5 x C160 11) [413, 990, 139297] C5 x C160
100) [140641, 455, 16596] C5 x C160 ---) [461, 910, 140641] C5 x C80
101) [143953, 463, 17604] C5 x C160 ---) [489, 926, 143953] C160
102) [148081, 1379, 142228] C5 x C160 ---) [37, 2201, 148081] C80
103) [158153, 3198, 26353] C5 x C160 ---) [73, 1599, 632612] C80
104) [161848, 868, 147894] C5 x C160 ---) [24, 572, 40462] C2 x C80
105) [163468, 1240, 220932] C5 x C160 ---) [17, 620, 40867] C160
106) [165404, 4742, 2975177] C5 x C160 ---) [233, 2371, 661616] C160
107) [195532, 1176, 150212] C5 x C160 ---) [17, 588, 48883] C160
108) [196984, 2262, 491225] C5 x C160 9) [401, 1131, 196984] C5 x C160
109) [200173, 1401, 440657] C5 x C160 ---) [17, 1791, 800692] C160
110) [204817, 976, 33327] C5 x C160 ---) [28, 1952, 819268] C2 x C80
111) [207793, 469, 3042] C5 x C160 ---) [8, 938, 207793] C160
112) [216813, 932, 343] C5 x C160 ---) [28, 1864, 867252] C2 x C80
113) [219256, 766, 91875] C5 x C160 ---) [12, 482, 54814] C2 x C80
114) [222844, 546, 18818] C5 x C160 ---) [8, 546, 55711] C160
115) [232924, 986, 10125] C5 x C160 ---) [5, 493, 58231] C160
116) [237628, 510, 5618] C5 x C160 ---) [8, 510, 59407] C160
117) [242249, 1443, 460000] C5 x C160 ---) [184, 2886, 242249] C2 x C80
118) [242249, 493, 200] C5 x C160 ---) [8, 986, 242249] C2 x C80
119) [248397, 557, 15463] C5 x C160 ---) [28, 1114, 248397] C2 x C80
120) [263281, 913, 142572] C5 x C160 ---) [12, 1826, 263281] C2 x C80
121) [273272, 560, 10082] C5 x C160 ---) [8, 560, 68318] C160
122) [286168, 1418, 216513] C5 x C160 ---) [33, 709, 71542] C2 x C80
123) [329873, 575, 188] C5 x C160 ---) [188, 1150, 329873] C160
124) [335377, 1225, 291312] C5 x C160 ---) [28, 2450, 335377] C2 x C80
125) [338201, 2911, 4724] C5 x C160 16) [1181, 5822, 8455025] C5 x C160
126) [340849, 809, 78408] C5 x C160 ---) [8, 1618, 340849] C160
127) [352777, 637, 13248] C5 x C160 ---) [92, 1274, 352777] C2 x C80
128) [371608, 2678, 306489] C5 x C160 ---) [849, 1339, 371608] C10 x C80
129) [449081, 677, 2312] C5 x C160 ---) [8, 1354, 449081] C2 x C80
130) [519641, 721, 50] C5 x C160 ---) [8, 1442, 519641] C80
131) [536929, 1525, 447174] C5 x C160 ---) [24, 3050, 536929] C160
132) [661209, 2991, 748800] C5 x C160 ---) [13, 1633, 661209] C160
133) [690721, 839, 3300] C5 x C160 ---) [33, 1678, 690721] C160
134) [708241, 1271, 226800] C5 x C160 ---) [28, 2542, 708241] C10 x C80
135) [732257, 883, 11858] C5 x C160 ---) [8, 1766, 732257] C160
136) [874681, 941, 2700] C5 x C160 ---) [12, 1882, 874681] C160
137) [890521, 955, 5376] C5 x C160 ---) [21, 1910, 890521] C2 x C80
138) [900957, 953, 1813] C5 x C160 ---) [37, 1906, 900957] C160
139) [1019129, 1227, 121600] C5 x C160 ---) [76, 2454, 1019129] C160
140) [1037017, 1243, 127008] C5 x C160 ---) [8, 2486, 1037017] C80
141) [1050857, 1043, 9248] C5 x C160 ---) [8, 2086, 1050857] C80
142) [1335097, 1473, 208658] C5 x C160 ---) [8, 2946, 1335097] C80
143) [1402033, 1693, 366054] C5 x C160 ---) [24, 3386, 1402033] C2 x C80
144) [1862209, 1367, 1620] C5 x C160 ---) [5, 2734, 1862209] C160
145) [3735769, 1937, 4050] C5 x C160 ---) [8, 3874, 3735769] C160
146) [4300909, 3633, 2224445] C5 x C160 ---) [5, 4229, 4300909] C160