Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C5 x C185 non-normal (D4) quartic CM field invariants: 31 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [29, 4486, 4880713] C5 x C185 ---) [4880713, 2243, 37584] C5 x C555
2) [373, 1126, 263257] C5 x C185 24) [263257, 563, 13428] C5 x C185
3) [401, 1386, 16693] C5 x C185 ---) [16693, 693, 115889] C185
4) [401, 442, 8741] C5 x C185 ---) [8741, 221, 10025] C185
5) [1429, 189, 8573] C5 x C185 ---) [8573, 378, 1429] C185
6) [2081, 642, 94717] C5 x C185 ---) [1933, 321, 2081] C185
7) [2153, 2467, 229184] C5 x C185 ---) [3581, 1853, 105497] C185
8) [3697, 4431, 249296] C5 x C185 13) [15581, 7649, 10384873] C5 x C185
9) [4357, 233, 3769] C5 x C185 ---) [3769, 466, 39213] C185
10) [9181, 3981, 819893] C5 x C185 ---) [2837, 3809, 3314341] C185
11) [13841, 539, 41488] C5 x C185 ---) [2593, 1078, 124569] C185
12) [14281, 2647, 1319652] C5 x C185 ---) [4073, 5294, 1728001] C185
13) [15581, 7649, 10384873] C5 x C185 8) [3697, 4431, 249296] C5 x C185
14) [18433, 1775, 414388] C5 x C185 ---) [613, 3193, 1493073] C185
15) [18773, 3957, 981181] C5 x C185 ---) [1021, 2501, 1520613] C185
16) [18773, 2153, 365693] C5 x C185 ---) [1013, 4306, 3172637] C185
17) [23173, 457, 73] C5 x C185 ---) [73, 914, 208557] C185
18) [27893, 501, 55777] C5 x C185 ---) [193, 1002, 27893] C185
19) [41453, 2298, 1154389] C5 x C185 ---) [229, 1149, 41453] C555
20) [47857, 3383, 169216] C5 x C185 ---) [661, 5897, 1196425] C185
21) [72997, 1298, 129213] C5 x C185 ---) [293, 649, 72997] C185
22) [73553, 1194, 62197] C5 x C185 ---) [37, 597, 73553] C185
23) [167009, 2514, 912013] C5 x C185 ---) [37, 1257, 167009] C185
24) [263257, 563, 13428] C5 x C185 2) [373, 1126, 263257] C5 x C185
25) [684037, 845, 7497] C5 x C185 ---) [17, 1690, 684037] C185
26) [1523369, 1267, 20480] C5 x C185 ---) [5, 2534, 1523369] C185
27) [1542041, 1339, 62720] C5 x C185 ---) [5, 2678, 1542041] C185
28) [1974073, 1411, 4212] C5 x C185 ---) [13, 2822, 1974073] C185
29) [2103449, 1723, 216320] C5 x C185 ---) [5, 3089, 2103449] C185
30) [2784553, 1715, 39168] C5 x C185 ---) [17, 3430, 2784553] C185
31) [3301981, 2649, 928805] C5 x C185 ---) [5, 3637, 3301981] C185