Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C7 non-normal (D4) quartic CM field invariants: 326 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 122, 3221] C7 ---) [3221, 61, 125] C21
2) [5, 141, 4909] C7 280) [4909, 97, 1125] C7
3) [5, 209, 10709] C7 313) [10709, 173, 4805] C7
4) [5, 193, 8861] C7 308) [8861, 121, 1445] C7
5) [5, 161, 6269] C7 291) [6269, 137, 3125] C7
6) [5, 221, 12149] C7 318) [12149, 157, 3125] C7
7) [5, 161, 6329] C7 292) [6329, 107, 1280] C7
8) [5, 122, 3541] C7 269) [3541, 61, 45] C7
9) [5, 157, 5381] C7 281) [5381, 149, 4205] C7
10) [5, 197, 8501] C7 ---) [8501, 109, 845] C35
11) [5, 81, 1489] C7 ---) [1489, 47, 180] C21
12) [5, 186, 7669] C7 302) [7669, 93, 245] C7
13) [5, 113, 3181] C7 ---) [3181, 81, 845] C35
14) [5, 98, 2381] C7 259) [2381, 49, 5] C7
15) [5, 201, 8389] C7 306) [8389, 197, 7605] C7
16) [5, 98, 2221] C7 255) [2221, 49, 45] C7
17) [5, 221, 11549] C7 317) [11549, 137, 1805] C7
18) [5, 133, 4421] C7 275) [4421, 101, 1445] C7
19) [5, 226, 11149] C7 316) [11149, 113, 405] C7
20) [5, 181, 7829] C7 303) [7829, 157, 4205] C7
21) [5, 109, 2969] C7 263) [2969, 83, 980] C7
22) [5, 129, 4129] C7 271) [4129, 103, 1620] C7
23) [5, 77, 1201] C7 236) [1201, 39, 80] C7
24) [5, 121, 3449] C7 266) [3449, 107, 2000] C7
25) [5, 226, 11789] C7 ---) [11789, 113, 245] C21
26) [5, 161, 6469] C7 293) [6469, 117, 1805] C7
27) [5, 162, 5581] C7 283) [5581, 81, 245] C7
28) [5, 169, 6089] C7 288) [6089, 163, 5120] C7
29) [5, 241, 13469] C7 323) [13469, 217, 8405] C7
30) [5, 121, 3209] C7 264) [3209, 67, 320] C7
31) [5, 266, 15269] C7 325) [15269, 133, 605] C7
32) [5, 274, 16349] C7 326) [16349, 137, 605] C7
33) [5, 77, 1481] C7 243) [1481, 59, 500] C7
34) [5, 274, 18269] C7 ---) [18269, 137, 125] C21
35) [5, 73, 1321] C7 241) [1321, 51, 320] C7
36) [8, 118, 3449] C7 267) [3449, 59, 8] C7
37) [8, 182, 5689] C7 284) [5689, 91, 648] C7
38) [8, 214, 10937] C7 314) [10937, 107, 128] C7
39) [8, 242, 11113] C7 315) [11113, 121, 882] C7
40) [8, 182, 5081] C7 ---) [5081, 91, 800] C21
41) [8, 178, 6121] C7 290) [6121, 89, 450] C7
42) [8, 194, 6521] C7 294) [6521, 97, 722] C7
43) [8, 262, 8969] C7 309) [8969, 131, 2048] C7
44) [8, 94, 1409] C7 242) [1409, 47, 200] C7
45) [8, 210, 8713] C7 ---) [8713, 105, 578] C21
46) [8, 230, 12713] C7 320) [12713, 115, 128] C7
47) [8, 62, 673] C7 220) [673, 31, 72] C7
48) [8, 102, 2473] C7 260) [2473, 51, 32] C7
49) [8, 166, 6089] C7 287) [6089, 83, 200] C7
50) [8, 278, 13913] C7 324) [13913, 139, 1352] C7
51) [8, 226, 10457] C7 ---) [10457, 113, 578] C21
52) [8, 130, 3257] C7 265) [3257, 65, 242] C7
53) [8, 102, 1801] C7 252) [1801, 51, 200] C7
54) [8, 178, 6569] C7 295) [6569, 89, 338] C7
55) [8, 42, 433] C7 205) [433, 21, 2] C7
56) [8, 214, 7577] C7 301) [7577, 107, 968] C7
57) [8, 210, 6793] C7 299) [6793, 105, 1058] C7
58) [8, 226, 12377] C7 319) [12377, 113, 98] C7
59) [8, 290, 13337] C7 322) [13337, 145, 1922] C7
60) [8, 230, 7817] C7 ---) [7817, 115, 1352] C35
61) [8, 74, 977] C7 231) [977, 37, 98] C7
62) [8, 166, 4297] C7 273) [4297, 83, 648] C7
63) [8, 46, 401] C7 ---) [401, 23, 32] C35
64) [8, 226, 9241] C7 312) [9241, 113, 882] C7
65) [8, 166, 6761] C7 298) [6761, 83, 32] C7
66) [8, 194, 9209] C7 311) [9209, 97, 50] C7
67) [13, 141, 2237] C7 256) [2237, 105, 2197] C7
68) [13, 101, 2521] C7 261) [2521, 167, 1300] C7
69) [13, 197, 8269] C7 304) [8269, 337, 26325] C7
70) [13, 165, 2357] C7 258) [2357, 93, 1573] C7
71) [13, 58, 373] C7 198) [373, 29, 117] C7
72) [13, 90, 1973] C7 254) [1973, 45, 13] C7
73) [13, 257, 12973] C7 321) [12973, 385, 33813] C7
74) [13, 114, 1949] C7 253) [1949, 57, 325] C7
75) [13, 146, 4861] C7 279) [4861, 73, 117] C7
76) [13, 305, 10357] C7 ---) [10357, 329, 3757] C7 x C7
77) [13, 161, 5749] C7 286) [5749, 233, 637] C7
78) [13, 69, 641] C7 217) [641, 63, 832] C7
79) [13, 129, 3221] C7 ---) [3221, 189, 8125] C21
80) [13, 125, 3877] C7 ---) [3877, 209, 2197] C21
81) [13, 185, 8293] C7 305) [8293, 353, 12493] C7
82) [13, 281, 9181] C7 ---) [9181, 217, 9477] C35
83) [13, 54, 521] C7 212) [521, 27, 52] C7
84) [13, 93, 1613] C7 249) [1613, 129, 3757] C7
85) [17, 343, 26756] C7 297) [6689, 199, 8228] C7
86) [17, 190, 6577] C7 296) [6577, 95, 612] C7
87) [17, 38, 89] C7 140) [89, 19, 68] C7
88) [17, 158, 3793] C7 270) [3793, 79, 612] C7
89) [17, 375, 34948] C7 307) [8737, 327, 24548] C7
90) [17, 58, 773] C7 223) [773, 29, 17] C7
91) [17, 74, 1301] C7 240) [1301, 37, 17] C7
92) [17, 50, 557] C7 215) [557, 25, 17] C7
93) [17, 182, 7193] C7 300) [7193, 91, 272] C7
94) [17, 198, 5449] C7 282) [5449, 99, 1088] C7
95) [17, 42, 373] C7 199) [373, 21, 17] C7
96) [17, 83, 1684] C7 203) [421, 77, 1377] C7
97) [17, 326, 9161] C7 310) [9161, 163, 4352] C7
98) [17, 279, 16804] C7 272) [4201, 147, 4352] C7
99) [29, 122, 821] C7 225) [821, 61, 725] C7
100) [29, 157, 877] C7 228) [877, 81, 1421] C7
101) [29, 69, 1009] C7 ---) [1009, 138, 725] C7 x C7
102) [29, 57, 457] C7 207) [457, 114, 1421] C7
103) [29, 121, 2029] C7 ---) [2029, 242, 6525] C7 x C7
104) [29, 109, 2789] C7 262) [2789, 218, 725] C7
105) [29, 94, 353] C7 197) [353, 47, 464] C7
106) [29, 69, 313] C7 190) [313, 67, 1044] C7
107) [29, 241, 2333] C7 257) [2333, 253, 1421] C7
108) [29, 50, 509] C7 211) [509, 25, 29] C7
109) [29, 70, 761] C7 ---) [761, 35, 116] C21
110) [37, 190, 8433] C7 229) [937, 95, 148] C7
111) [37, 101, 1801] C7 251) [1801, 202, 2997] C7
112) [37, 365, 3253] C7 ---) [3253, 233, 6253] C35
113) [37, 129, 821] C7 226) [821, 121, 1813] C7
114) [37, 25, 73] C7 135) [73, 50, 333] C7
115) [37, 61, 181] C7 170) [181, 73, 925] C7
116) [41, 351, 18244] C7 276) [4561, 371, 5904] C7
117) [41, 335, 24356] C7 289) [6089, 391, 164] C7
118) [41, 175, 5924] C7 244) [1481, 259, 16400] C7
119) [41, 190, 3121] C7 ---) [3121, 95, 1476] C35
120) [41, 382, 4337] C7 274) [4337, 191, 8036] C7
121) [41, 279, 19204] C7 278) [4801, 379, 5904] C7
122) [41, 207, 7012] C7 250) [1753, 223, 1476] C7
123) [41, 75, 1396] C7 194) [349, 101, 369] C7
124) [41, 534, 5689] C7 285) [5689, 267, 16400] C7
125) [53, 85, 733] C7 ---) [733, 170, 4293] C21
126) [53, 153, 1069] C7 235) [1069, 233, 477] C7
127) [53, 49, 269] C7 184) [269, 98, 1325] C7
128) [53, 218, 1493] C7 245) [1493, 109, 2597] C7
129) [61, 173, 757] C7 221) [757, 137, 2989] C7
130) [61, 121, 229] C7 ---) [229, 89, 549] C21
131) [61, 165, 1301] C7 239) [1301, 321, 17629] C7
132) [61, 89, 1233] C7 158) [137, 47, 244] C7
133) [61, 93, 317] C7 192) [317, 141, 2989] C7
134) [73, 526, 39969] C7 ---) [4441, 263, 7300] C35
135) [73, 50, 333] C7 114) [37, 25, 73] C7
136) [73, 150, 953] C7 230) [953, 75, 1168] C7
137) [73, 239, 14116] C7 268) [3529, 478, 657] C7
138) [73, 206, 9441] C7 234) [1049, 103, 292] C7
139) [73, 263, 3988] C7 232) [997, 157, 5913] C7
140) [89, 19, 68] C7 87) [17, 38, 89] C7
141) [89, 218, 11525] C7 208) [461, 109, 89] C7
142) [97, 406, 35001] C7 ---) [3889, 203, 1552] C21
143) [97, 115, 3088] C7 173) [193, 119, 3492] C7
144) [97, 107, 2644] C7 219) [661, 214, 873] C7
145) [97, 255, 3428] C7 227) [857, 275, 1552] C7
146) [97, 287, 18628] C7 277) [4657, 574, 7857] C7
147) [97, 122, 229] C7 ---) [229, 61, 873] C21
148) [101, 86, 233] C7 181) [233, 43, 404] C7
149) [109, 138, 4325] C7 169) [173, 69, 109] C7
150) [109, 293, 1597] C7 247) [1597, 337, 8829] C7
151) [109, 69, 509] C7 209) [509, 138, 2725] C7
152) [113, 50, 173] C7 168) [173, 25, 113] C7
153) [113, 110, 1217] C7 238) [1217, 55, 452] C7
154) [113, 279, 4516] C7 ---) [1129, 347, 16272] C63
155) [113, 182, 1049] C7 233) [1049, 91, 1808] C7
156) [113, 227, 12176] C7 ---) [761, 211, 1808] C21
157) [137, 267, 16144] C7 ---) [1009, 263, 4932] C7 x C7
158) [137, 47, 244] C7 132) [61, 89, 1233] C7
159) [137, 79, 1252] C7 189) [313, 158, 1233] C7
160) [149, 29, 173] C7 167) [173, 58, 149] C7
161) [149, 178, 7325] C7 187) [293, 89, 149] C7
162) [157, 165, 173] C7 166) [173, 121, 157] C7
163) [157, 121, 1737] C7 175) [193, 151, 5652] C7
164) [157, 53, 349] C7 196) [349, 106, 1413] C7
165) [173, 149, 317] C7 191) [317, 185, 8477] C7
166) [173, 121, 157] C7 162) [157, 165, 173] C7
167) [173, 58, 149] C7 160) [149, 29, 173] C7
168) [173, 25, 113] C7 152) [113, 50, 173] C7
169) [173, 69, 109] C7 149) [109, 138, 4325] C7
170) [181, 73, 925] C7 115) [37, 61, 181] C7
171) [181, 221, 2029] C7 ---) [2029, 442, 40725] C7 x C7
172) [181, 81, 509] C7 210) [509, 162, 4525] C7
173) [193, 119, 3492] C7 143) [97, 115, 3088] C7
174) [193, 310, 11673] C7 ---) [1297, 155, 3088] C77
175) [193, 151, 5652] C7 163) [157, 121, 1737] C7
176) [193, 319, 23076] C7 218) [641, 279, 19300] C7
177) [193, 263, 6436] C7 248) [1609, 526, 43425] C7
178) [197, 37, 293] C7 188) [293, 74, 197] C7
179) [233, 119, 2084] C7 213) [521, 238, 5825] C7
180) [233, 126, 241] C7 182) [241, 63, 932] C7
181) [233, 43, 404] C7 148) [101, 86, 233] C7
182) [241, 63, 932] C7 180) [233, 126, 241] C7
183) [241, 395, 38464] C7 216) [601, 223, 8676] C7
184) [269, 98, 1325] C7 127) [53, 49, 269] C7
185) [277, 178, 6813] C7 222) [757, 89, 277] C7
186) [281, 299, 6544] C7 202) [409, 195, 4496] C7
187) [293, 89, 149] C7 161) [149, 178, 7325] C7
188) [293, 74, 197] C7 178) [197, 37, 293] C7
189) [313, 158, 1233] C7 159) [137, 79, 1252] C7
190) [313, 67, 1044] C7 106) [29, 69, 313] C7
191) [317, 185, 8477] C7 165) [173, 149, 317] C7
192) [317, 141, 2989] C7 133) [61, 93, 317] C7
193) [337, 446, 1201] C7 237) [1201, 223, 12132] C7
194) [349, 101, 369] C7 123) [41, 75, 1396] C7
195) [349, 121, 3573] C7 201) [397, 242, 349] C7
196) [349, 106, 1413] C7 164) [157, 53, 349] C7
197) [353, 47, 464] C7 105) [29, 94, 353] C7
198) [373, 29, 117] C7 71) [13, 58, 373] C7
199) [373, 21, 17] C7 95) [17, 42, 373] C7
200) [373, 289, 18549] C7 ---) [229, 157, 3357] C21
201) [397, 242, 349] C7 195) [349, 121, 3573] C7
202) [409, 195, 4496] C7 186) [281, 299, 6544] C7
203) [421, 77, 1377] C7 96) [17, 83, 1684] C7
204) [421, 250, 13941] C7 246) [1549, 125, 421] C7
205) [433, 21, 2] C7 55) [8, 42, 433] C7
206) [449, 251, 12944] C7 224) [809, 502, 11225] C7
207) [457, 114, 1421] C7 102) [29, 57, 457] C7
208) [461, 109, 89] C7 141) [89, 218, 11525] C7
209) [509, 138, 2725] C7 151) [109, 69, 509] C7
210) [509, 162, 4525] C7 172) [181, 81, 509] C7
211) [509, 25, 29] C7 108) [29, 50, 509] C7
212) [521, 27, 52] C7 83) [13, 54, 521] C7
213) [521, 238, 5825] C7 179) [233, 119, 2084] C7
214) [541, 130, 2061] C7 ---) [229, 65, 541] C21
215) [557, 25, 17] C7 92) [17, 50, 557] C7
216) [601, 223, 8676] C7 183) [241, 395, 38464] C7
217) [641, 63, 832] C7 78) [13, 69, 641] C7
218) [641, 279, 19300] C7 176) [193, 319, 23076] C7
219) [661, 214, 873] C7 144) [97, 107, 2644] C7
220) [673, 31, 72] C7 47) [8, 62, 673] C7
221) [757, 137, 2989] C7 129) [61, 173, 757] C7
222) [757, 89, 277] C7 185) [277, 178, 6813] C7
223) [773, 29, 17] C7 90) [17, 58, 773] C7
224) [809, 502, 11225] C7 206) [449, 251, 12944] C7
225) [821, 61, 725] C7 99) [29, 122, 821] C7
226) [821, 121, 1813] C7 113) [37, 129, 821] C7
227) [857, 275, 1552] C7 145) [97, 255, 3428] C7
228) [877, 81, 1421] C7 100) [29, 157, 877] C7
229) [937, 95, 148] C7 110) [37, 190, 8433] C7
230) [953, 75, 1168] C7 136) [73, 150, 953] C7
231) [977, 37, 98] C7 61) [8, 74, 977] C7
232) [997, 157, 5913] C7 139) [73, 263, 3988] C7
233) [1049, 91, 1808] C7 155) [113, 182, 1049] C7
234) [1049, 103, 292] C7 138) [73, 206, 9441] C7
235) [1069, 233, 477] C7 126) [53, 153, 1069] C7
236) [1201, 39, 80] C7 23) [5, 77, 1201] C7
237) [1201, 223, 12132] C7 193) [337, 446, 1201] C7
238) [1217, 55, 452] C7 153) [113, 110, 1217] C7
239) [1301, 321, 17629] C7 131) [61, 165, 1301] C7
240) [1301, 37, 17] C7 91) [17, 74, 1301] C7
241) [1321, 51, 320] C7 35) [5, 73, 1321] C7
242) [1409, 47, 200] C7 44) [8, 94, 1409] C7
243) [1481, 59, 500] C7 33) [5, 77, 1481] C7
244) [1481, 259, 16400] C7 118) [41, 175, 5924] C7
245) [1493, 109, 2597] C7 128) [53, 218, 1493] C7
246) [1549, 125, 421] C7 204) [421, 250, 13941] C7
247) [1597, 337, 8829] C7 150) [109, 293, 1597] C7
248) [1609, 526, 43425] C7 177) [193, 263, 6436] C7
249) [1613, 129, 3757] C7 84) [13, 93, 1613] C7
250) [1753, 223, 1476] C7 122) [41, 207, 7012] C7
251) [1801, 202, 2997] C7 111) [37, 101, 1801] C7
252) [1801, 51, 200] C7 53) [8, 102, 1801] C7
253) [1949, 57, 325] C7 74) [13, 114, 1949] C7
254) [1973, 45, 13] C7 72) [13, 90, 1973] C7
255) [2221, 49, 45] C7 16) [5, 98, 2221] C7
256) [2237, 105, 2197] C7 67) [13, 141, 2237] C7
257) [2333, 253, 1421] C7 107) [29, 241, 2333] C7
258) [2357, 93, 1573] C7 70) [13, 165, 2357] C7
259) [2381, 49, 5] C7 14) [5, 98, 2381] C7
260) [2473, 51, 32] C7 48) [8, 102, 2473] C7
261) [2521, 167, 1300] C7 68) [13, 101, 2521] C7
262) [2789, 218, 725] C7 104) [29, 109, 2789] C7
263) [2969, 83, 980] C7 21) [5, 109, 2969] C7
264) [3209, 67, 320] C7 30) [5, 121, 3209] C7
265) [3257, 65, 242] C7 52) [8, 130, 3257] C7
266) [3449, 107, 2000] C7 24) [5, 121, 3449] C7
267) [3449, 59, 8] C7 36) [8, 118, 3449] C7
268) [3529, 478, 657] C7 137) [73, 239, 14116] C7
269) [3541, 61, 45] C7 8) [5, 122, 3541] C7
270) [3793, 79, 612] C7 88) [17, 158, 3793] C7
271) [4129, 103, 1620] C7 22) [5, 129, 4129] C7
272) [4201, 147, 4352] C7 98) [17, 279, 16804] C7
273) [4297, 83, 648] C7 62) [8, 166, 4297] C7
274) [4337, 191, 8036] C7 120) [41, 382, 4337] C7
275) [4421, 101, 1445] C7 18) [5, 133, 4421] C7
276) [4561, 371, 5904] C7 116) [41, 351, 18244] C7
277) [4657, 574, 7857] C7 146) [97, 287, 18628] C7
278) [4801, 379, 5904] C7 121) [41, 279, 19204] C7
279) [4861, 73, 117] C7 75) [13, 146, 4861] C7
280) [4909, 97, 1125] C7 2) [5, 141, 4909] C7
281) [5381, 149, 4205] C7 9) [5, 157, 5381] C7
282) [5449, 99, 1088] C7 94) [17, 198, 5449] C7
283) [5581, 81, 245] C7 27) [5, 162, 5581] C7
284) [5689, 91, 648] C7 37) [8, 182, 5689] C7
285) [5689, 267, 16400] C7 124) [41, 534, 5689] C7
286) [5749, 233, 637] C7 77) [13, 161, 5749] C7
287) [6089, 83, 200] C7 49) [8, 166, 6089] C7
288) [6089, 163, 5120] C7 28) [5, 169, 6089] C7
289) [6089, 391, 164] C7 117) [41, 335, 24356] C7
290) [6121, 89, 450] C7 41) [8, 178, 6121] C7
291) [6269, 137, 3125] C7 5) [5, 161, 6269] C7
292) [6329, 107, 1280] C7 7) [5, 161, 6329] C7
293) [6469, 117, 1805] C7 26) [5, 161, 6469] C7
294) [6521, 97, 722] C7 42) [8, 194, 6521] C7
295) [6569, 89, 338] C7 54) [8, 178, 6569] C7
296) [6577, 95, 612] C7 86) [17, 190, 6577] C7
297) [6689, 199, 8228] C7 85) [17, 343, 26756] C7
298) [6761, 83, 32] C7 65) [8, 166, 6761] C7
299) [6793, 105, 1058] C7 57) [8, 210, 6793] C7
300) [7193, 91, 272] C7 93) [17, 182, 7193] C7
301) [7577, 107, 968] C7 56) [8, 214, 7577] C7
302) [7669, 93, 245] C7 12) [5, 186, 7669] C7
303) [7829, 157, 4205] C7 20) [5, 181, 7829] C7
304) [8269, 337, 26325] C7 69) [13, 197, 8269] C7
305) [8293, 353, 12493] C7 81) [13, 185, 8293] C7
306) [8389, 197, 7605] C7 15) [5, 201, 8389] C7
307) [8737, 327, 24548] C7 89) [17, 375, 34948] C7
308) [8861, 121, 1445] C7 4) [5, 193, 8861] C7
309) [8969, 131, 2048] C7 43) [8, 262, 8969] C7
310) [9161, 163, 4352] C7 97) [17, 326, 9161] C7
311) [9209, 97, 50] C7 66) [8, 194, 9209] C7
312) [9241, 113, 882] C7 64) [8, 226, 9241] C7
313) [10709, 173, 4805] C7 3) [5, 209, 10709] C7
314) [10937, 107, 128] C7 38) [8, 214, 10937] C7
315) [11113, 121, 882] C7 39) [8, 242, 11113] C7
316) [11149, 113, 405] C7 19) [5, 226, 11149] C7
317) [11549, 137, 1805] C7 17) [5, 221, 11549] C7
318) [12149, 157, 3125] C7 6) [5, 221, 12149] C7
319) [12377, 113, 98] C7 58) [8, 226, 12377] C7
320) [12713, 115, 128] C7 46) [8, 230, 12713] C7
321) [12973, 385, 33813] C7 73) [13, 257, 12973] C7
322) [13337, 145, 1922] C7 59) [8, 290, 13337] C7
323) [13469, 217, 8405] C7 29) [5, 241, 13469] C7
324) [13913, 139, 1352] C7 50) [8, 278, 13913] C7
325) [15269, 133, 605] C7 31) [5, 266, 15269] C7
326) [16349, 137, 605] C7 32) [5, 274, 16349] C7