A quartic CM field field K is represented by invariants [D,A,B], where
K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real
quadratic subfield (hence A2-4B = m2D for some m).
Class number:
[Non-normal]
[Cyclic]
Class group C7 x C14 non-normal (D4) quartic CM field invariants: 105 fields
K |
Quartic invariants |
Cl(OK) |
Igusa invariants |
Kr |
Reflex invariants |
Cl(OKr) |
Igusa invariants |
1) |
[5, 1381, 399289] |
C7 x C14 |
|
100) |
[399289, 1347, 353780] |
C7 x C14 |
2) |
[5, 1646, 549329] |
C7 x C14 |
|
104) |
[549329, 823, 32000] |
C7 x C14 |
3) |
[8, 442, 33703] |
C7 x C14 |
|
94) |
[134812, 442, 15138] |
C7 x C14 |
4) |
[8, 1906, 892009] |
C7 x C14 |
|
---) |
[892009, 953, 4050] |
C7 x C154 |
5) |
[8, 3986, 2672777] |
C7 x C14 |
|
---) |
[2672777, 1993, 324818] |
C7 x C7 x C14 |
6) |
[12, 1010, 79333] |
C7 x C14 |
|
---) |
[79333, 505, 43923] |
C7 x C42 |
7) |
[12, 626, 95617] |
C7 x C14 |
■ |
92) |
[95617, 313, 588] |
C7 x C14 |
8) |
[12, 2354, 1373041] |
C7 x C14 |
|
105) |
[1373041, 1177, 3072] |
C7 x C14 |
9) |
[13, 1741, 250689] |
C7 x C14 |
|
99) |
[250689, 1763, 212992] |
C7 x C14 |
10) |
[17, 657, 92098] |
C7 x C14 |
|
---) |
[368392, 1314, 63257] |
C7 x C56 |
11) |
[21, 1682, 700477] |
C7 x C14 |
|
---) |
[700477, 841, 1701] |
C7 x C28 |
12) |
[21, 989, 244273] |
C7 x C14 |
■ |
---) |
[244273, 1978, 1029] |
C7 x C112 |
13) |
[24, 2756, 1874308] |
C7 x C14 |
|
103) |
[468577, 1378, 6144] |
C7 x C14 |
14) |
[24, 578, 47017] |
C7 x C14 |
■ |
86) |
[47017, 289, 9126] |
C7 x C14 |
15) |
[28, 4066, 463857] |
C7 x C14 |
|
102) |
[463857, 2033, 917308] |
C7 x C14 |
16) |
[29, 505, 20771] |
C7 x C14 |
|
91) |
[83084, 1010, 171941] |
C7 x C14 |
17) |
[29, 1082, 286997] |
C7 x C14 |
|
---) |
[286997, 541, 1421] |
C14 x C42 |
18) |
[29, 805, 25931] |
C7 x C14 |
|
93) |
[103724, 1610, 544301] |
C7 x C14 |
19) |
[33, 866, 139837] |
C7 x C14 |
|
95) |
[139837, 433, 11913] |
C7 x C14 |
20) |
[44, 1526, 423769] |
C7 x C14 |
|
101) |
[423769, 763, 39600] |
C7 x C14 |
21) |
[44, 490, 48761] |
C7 x C14 |
■ |
89) |
[48761, 245, 2816] |
C7 x C14 |
22) |
[76, 1522, 438597] |
C7 x C14 |
|
88) |
[48733, 761, 35131] |
C7 x C14 |
23) |
[76, 2058, 990441] |
C7 x C14 |
|
---) |
[110049, 1029, 17100] |
C7 x C42 |
24) |
[92, 838, 174089] |
C7 x C14 |
|
97) |
[174089, 419, 368] |
C7 x C14 |
25) |
[113, 848, 41351] |
C7 x C14 |
|
---) |
[165404, 1696, 553700] |
C7 x C70 |
26) |
[113, 1414, 239497] |
C7 x C14 |
|
98) |
[239497, 707, 65088] |
C7 x C14 |
27) |
[137, 935, 149200] |
C7 x C14 |
■ |
31) |
[373, 825, 167825] |
C7 x C14 |
■ |
28) |
[188, 2890, 54617] |
C7 x C14 |
|
90) |
[54617, 1445, 508352] |
C7 x C14 |
29) |
[201, 272, 8647] |
C7 x C14 |
|
---) |
[34588, 544, 39396] |
C7 x C182 |
30) |
[293, 103, 821] |
C7 x C14 |
|
46) |
[821, 206, 7325] |
C7 x C14 |
31) |
[373, 825, 167825] |
C7 x C14 |
■ |
27) |
[137, 935, 149200] |
C7 x C14 |
■ |
32) |
[389, 368, 33467] |
C7 x C14 |
|
61) |
[2732, 736, 1556] |
C7 x C14 |
33) |
[389, 704, 58163] |
C7 x C14 |
|
65) |
[4748, 1408, 262964] |
C7 x C14 |
34) |
[397, 727, 120123] |
C7 x C14 |
|
68) |
[5932, 1454, 48037] |
C7 x C14 |
35) |
[417, 707, 87328] |
C7 x C14 |
|
---) |
[21832, 1414, 150537] |
C7 x C56 |
36) |
[556, 802, 51825] |
C7 x C14 |
|
57) |
[2073, 401, 27244] |
C7 x C14 |
37) |
[569, 247, 13972] |
C7 x C14 |
|
64) |
[3493, 494, 5121] |
C7 x C14 |
38) |
[577, 631, 99396] |
C7 x C14 |
■ |
---) |
[2761, 1262, 577] |
C14 |
■ |
39) |
[577, 53, 558] |
C7 x C14 |
■ |
---) |
[248, 106, 577] |
C14 |
■ |
40) |
[577, 205, 3438] |
C7 x C14 |
■ |
---) |
[1528, 410, 28273] |
C14 |
■ |
41) |
[577, 123, 2484] |
C7 x C14 |
■ |
---) |
[69, 197, 577] |
C14 |
■ |
42) |
[577, 130, 1917] |
C7 x C14 |
■ |
---) |
[213, 65, 577] |
C14 |
■ |
43) |
[653, 173, 6013] |
C7 x C14 |
|
69) |
[6013, 346, 5877] |
C7 x C14 |
44) |
[717, 1229, 14629] |
C7 x C14 |
|
77) |
[14629, 2458, 1451925] |
C7 x C14 |
45) |
[737, 655, 9788] |
C7 x C14 |
|
74) |
[9788, 1310, 389873] |
C7 x C14 |
46) |
[821, 206, 7325] |
C7 x C14 |
|
30) |
[293, 103, 821] |
C7 x C14 |
47) |
[857, 691, 102016] |
C7 x C14 |
|
---) |
[6376, 1382, 69417] |
C14 x C14 |
48) |
[1009, 332, 18475] |
C7 x C14 |
■ |
---) |
[2956, 664, 36324] |
C14 |
■ |
49) |
[1061, 1741, 736285] |
C7 x C14 |
|
---) |
[6085, 2017, 467901] |
C14 x C70 |
50) |
[1149, 137, 4405] |
C7 x C14 |
|
---) |
[4405, 274, 1149] |
C7 x C28 |
51) |
[1329, 1194, 57384] |
C7 x C14 |
|
---) |
[6376, 2388, 1196100] |
C7 x C28 |
52) |
[1601, 491, 11840] |
C7 x C14 |
■ |
---) |
[185, 467, 25616] |
C2 x C14 |
■ |
53) |
[1789, 864, 141899] |
C7 x C14 |
|
55) |
[1964, 1728, 178900] |
C7 x C14 |
54) |
[1941, 229, 12625] |
C7 x C14 |
|
---) |
[505, 458, 1941] |
C7 x C56 |
55) |
[1964, 1728, 178900] |
C7 x C14 |
|
53) |
[1789, 864, 141899] |
C7 x C14 |
56) |
[1973, 241, 2189] |
C7 x C14 |
|
58) |
[2189, 482, 49325] |
C7 x C14 |
57) |
[2073, 401, 27244] |
C7 x C14 |
|
36) |
[556, 802, 51825] |
C7 x C14 |
58) |
[2189, 482, 49325] |
C7 x C14 |
|
56) |
[1973, 241, 2189] |
C7 x C14 |
59) |
[2217, 343, 15556] |
C7 x C14 |
|
---) |
[3889, 686, 55425] |
C7 x C42 |
60) |
[2721, 2033, 978172] |
C7 x C14 |
|
67) |
[5788, 4066, 220401] |
C7 x C14 |
61) |
[2732, 736, 1556] |
C7 x C14 |
|
32) |
[389, 368, 33467] |
C7 x C14 |
62) |
[2913, 55, 28] |
C7 x C14 |
■ |
---) |
[28, 110, 2913] |
C14 |
■ |
63) |
[3049, 1795, 634000] |
C7 x C14 |
|
---) |
[1585, 1771, 780544] |
C14 x C14 |
64) |
[3493, 494, 5121] |
C7 x C14 |
|
37) |
[569, 247, 13972] |
C7 x C14 |
65) |
[4748, 1408, 262964] |
C7 x C14 |
|
33) |
[389, 704, 58163] |
C7 x C14 |
66) |
[5501, 521, 473] |
C7 x C14 |
|
---) |
[473, 1042, 269549] |
C7 x C42 |
67) |
[5788, 4066, 220401] |
C7 x C14 |
|
60) |
[2721, 2033, 978172] |
C7 x C14 |
68) |
[5932, 1454, 48037] |
C7 x C14 |
|
34) |
[397, 727, 120123] |
C7 x C14 |
69) |
[6013, 346, 5877] |
C7 x C14 |
|
43) |
[653, 173, 6013] |
C7 x C14 |
70) |
[6577, 229, 11466] |
C7 x C14 |
|
---) |
[104, 458, 6577] |
C14 x C14 |
■ |
71) |
[8661, 269, 15925] |
C7 x C14 |
■ |
---) |
[13, 229, 8661] |
C14 |
■ |
72) |
[9049, 107, 600] |
C7 x C14 |
■ |
---) |
[24, 214, 9049] |
C14 |
■ |
73) |
[9101, 161, 4205] |
C7 x C14 |
■ |
---) |
[5, 193, 9101] |
C14 |
■ |
74) |
[9788, 1310, 389873] |
C7 x C14 |
|
45) |
[737, 655, 9788] |
C7 x C14 |
75) |
[11549, 1433, 510485] |
C7 x C14 |
|
---) |
[965, 2866, 11549] |
C14 x C14 |
76) |
[13701, 353, 325] |
C7 x C14 |
■ |
---) |
[13, 289, 13701] |
C14 |
■ |
77) |
[14629, 2458, 1451925] |
C7 x C14 |
|
44) |
[717, 1229, 14629] |
C7 x C14 |
78) |
[16556, 538, 6137] |
C7 x C14 |
■ |
---) |
[17, 269, 16556] |
C14 |
■ |
79) |
[22289, 247, 9680] |
C7 x C14 |
■ |
---) |
[5, 301, 22289] |
C14 |
■ |
80) |
[23581, 634, 6165] |
C7 x C14 |
|
---) |
[685, 317, 23581] |
C14 x C14 |
81) |
[23857, 223, 6468] |
C7 x C14 |
■ |
---) |
[33, 446, 23857] |
C14 |
■ |
82) |
[24473, 289, 14762] |
C7 x C14 |
|
---) |
[488, 578, 24473] |
C14 x C14 |
83) |
[28369, 169, 48] |
C7 x C14 |
■ |
---) |
[12, 338, 28369] |
C14 |
■ |
84) |
[38492, 1280, 371108] |
C7 x C14 |
|
---) |
[257, 640, 9623] |
C7 x C42 |
85) |
[45749, 413, 31205] |
C7 x C14 |
■ |
---) |
[5, 449, 45749] |
C14 |
■ |
86) |
[47017, 289, 9126] |
C7 x C14 |
|
14) |
[24, 578, 47017] |
C7 x C14 |
■ |
87) |
[47041, 301, 10890] |
C7 x C14 |
|
---) |
[40, 602, 47041] |
C14 x C14 |
■ |
88) |
[48733, 761, 35131] |
C7 x C14 |
|
22) |
[76, 1522, 438597] |
C7 x C14 |
89) |
[48761, 245, 2816] |
C7 x C14 |
|
21) |
[44, 490, 48761] |
C7 x C14 |
■ |
90) |
[54617, 1445, 508352] |
C7 x C14 |
|
28) |
[188, 2890, 54617] |
C7 x C14 |
91) |
[83084, 1010, 171941] |
C7 x C14 |
|
16) |
[29, 505, 20771] |
C7 x C14 |
92) |
[95617, 313, 588] |
C7 x C14 |
|
7) |
[12, 626, 95617] |
C7 x C14 |
■ |
93) |
[103724, 1610, 544301] |
C7 x C14 |
|
18) |
[29, 805, 25931] |
C7 x C14 |
94) |
[134812, 442, 15138] |
C7 x C14 |
|
3) |
[8, 442, 33703] |
C7 x C14 |
95) |
[139837, 433, 11913] |
C7 x C14 |
|
19) |
[33, 866, 139837] |
C7 x C14 |
96) |
[149433, 401, 2842] |
C7 x C14 |
|
---) |
[232, 802, 149433] |
C7 x C28 |
97) |
[174089, 419, 368] |
C7 x C14 |
|
24) |
[92, 838, 174089] |
C7 x C14 |
98) |
[239497, 707, 65088] |
C7 x C14 |
|
26) |
[113, 1414, 239497] |
C7 x C14 |
99) |
[250689, 1763, 212992] |
C7 x C14 |
|
9) |
[13, 1741, 250689] |
C7 x C14 |
100) |
[399289, 1347, 353780] |
C7 x C14 |
|
1) |
[5, 1381, 399289] |
C7 x C14 |
101) |
[423769, 763, 39600] |
C7 x C14 |
|
20) |
[44, 1526, 423769] |
C7 x C14 |
102) |
[463857, 2033, 917308] |
C7 x C14 |
|
15) |
[28, 4066, 463857] |
C7 x C14 |
103) |
[468577, 1378, 6144] |
C7 x C14 |
|
13) |
[24, 2756, 1874308] |
C7 x C14 |
104) |
[549329, 823, 32000] |
C7 x C14 |
|
2) |
[5, 1646, 549329] |
C7 x C14 |
105) |
[1373041, 1177, 3072] |
C7 x C14 |
|
8) |
[12, 2354, 1373041] |
C7 x C14 |