Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C7 x C14 non-normal (D4) quartic CM field invariants: 105 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 1381, 399289] C7 x C14 100) [399289, 1347, 353780] C7 x C14
2) [5, 1646, 549329] C7 x C14 104) [549329, 823, 32000] C7 x C14
3) [8, 442, 33703] C7 x C14 94) [134812, 442, 15138] C7 x C14
4) [8, 1906, 892009] C7 x C14 ---) [892009, 953, 4050] C7 x C154
5) [8, 3986, 2672777] C7 x C14 ---) [2672777, 1993, 324818] C7 x C7 x C14
6) [12, 1010, 79333] C7 x C14 ---) [79333, 505, 43923] C7 x C42
7) [12, 626, 95617] C7 x C14 92) [95617, 313, 588] C7 x C14
8) [12, 2354, 1373041] C7 x C14 105) [1373041, 1177, 3072] C7 x C14
9) [13, 1741, 250689] C7 x C14 99) [250689, 1763, 212992] C7 x C14
10) [17, 657, 92098] C7 x C14 ---) [368392, 1314, 63257] C7 x C56
11) [21, 1682, 700477] C7 x C14 ---) [700477, 841, 1701] C7 x C28
12) [21, 989, 244273] C7 x C14 ---) [244273, 1978, 1029] C7 x C112
13) [24, 2756, 1874308] C7 x C14 103) [468577, 1378, 6144] C7 x C14
14) [24, 578, 47017] C7 x C14 86) [47017, 289, 9126] C7 x C14
15) [28, 4066, 463857] C7 x C14 102) [463857, 2033, 917308] C7 x C14
16) [29, 505, 20771] C7 x C14 91) [83084, 1010, 171941] C7 x C14
17) [29, 1082, 286997] C7 x C14 ---) [286997, 541, 1421] C14 x C42
18) [29, 805, 25931] C7 x C14 93) [103724, 1610, 544301] C7 x C14
19) [33, 866, 139837] C7 x C14 95) [139837, 433, 11913] C7 x C14
20) [44, 1526, 423769] C7 x C14 101) [423769, 763, 39600] C7 x C14
21) [44, 490, 48761] C7 x C14 89) [48761, 245, 2816] C7 x C14
22) [76, 1522, 438597] C7 x C14 88) [48733, 761, 35131] C7 x C14
23) [76, 2058, 990441] C7 x C14 ---) [110049, 1029, 17100] C7 x C42
24) [92, 838, 174089] C7 x C14 97) [174089, 419, 368] C7 x C14
25) [113, 848, 41351] C7 x C14 ---) [165404, 1696, 553700] C7 x C70
26) [113, 1414, 239497] C7 x C14 98) [239497, 707, 65088] C7 x C14
27) [137, 935, 149200] C7 x C14 31) [373, 825, 167825] C7 x C14
28) [188, 2890, 54617] C7 x C14 90) [54617, 1445, 508352] C7 x C14
29) [201, 272, 8647] C7 x C14 ---) [34588, 544, 39396] C7 x C182
30) [293, 103, 821] C7 x C14 46) [821, 206, 7325] C7 x C14
31) [373, 825, 167825] C7 x C14 27) [137, 935, 149200] C7 x C14
32) [389, 368, 33467] C7 x C14 61) [2732, 736, 1556] C7 x C14
33) [389, 704, 58163] C7 x C14 65) [4748, 1408, 262964] C7 x C14
34) [397, 727, 120123] C7 x C14 68) [5932, 1454, 48037] C7 x C14
35) [417, 707, 87328] C7 x C14 ---) [21832, 1414, 150537] C7 x C56
36) [556, 802, 51825] C7 x C14 57) [2073, 401, 27244] C7 x C14
37) [569, 247, 13972] C7 x C14 64) [3493, 494, 5121] C7 x C14
38) [577, 631, 99396] C7 x C14 ---) [2761, 1262, 577] C14
39) [577, 53, 558] C7 x C14 ---) [248, 106, 577] C14
40) [577, 205, 3438] C7 x C14 ---) [1528, 410, 28273] C14
41) [577, 123, 2484] C7 x C14 ---) [69, 197, 577] C14
42) [577, 130, 1917] C7 x C14 ---) [213, 65, 577] C14
43) [653, 173, 6013] C7 x C14 69) [6013, 346, 5877] C7 x C14
44) [717, 1229, 14629] C7 x C14 77) [14629, 2458, 1451925] C7 x C14
45) [737, 655, 9788] C7 x C14 74) [9788, 1310, 389873] C7 x C14
46) [821, 206, 7325] C7 x C14 30) [293, 103, 821] C7 x C14
47) [857, 691, 102016] C7 x C14 ---) [6376, 1382, 69417] C14 x C14
48) [1009, 332, 18475] C7 x C14 ---) [2956, 664, 36324] C14
49) [1061, 1741, 736285] C7 x C14 ---) [6085, 2017, 467901] C14 x C70
50) [1149, 137, 4405] C7 x C14 ---) [4405, 274, 1149] C7 x C28
51) [1329, 1194, 57384] C7 x C14 ---) [6376, 2388, 1196100] C7 x C28
52) [1601, 491, 11840] C7 x C14 ---) [185, 467, 25616] C2 x C14
53) [1789, 864, 141899] C7 x C14 55) [1964, 1728, 178900] C7 x C14
54) [1941, 229, 12625] C7 x C14 ---) [505, 458, 1941] C7 x C56
55) [1964, 1728, 178900] C7 x C14 53) [1789, 864, 141899] C7 x C14
56) [1973, 241, 2189] C7 x C14 58) [2189, 482, 49325] C7 x C14
57) [2073, 401, 27244] C7 x C14 36) [556, 802, 51825] C7 x C14
58) [2189, 482, 49325] C7 x C14 56) [1973, 241, 2189] C7 x C14
59) [2217, 343, 15556] C7 x C14 ---) [3889, 686, 55425] C7 x C42
60) [2721, 2033, 978172] C7 x C14 67) [5788, 4066, 220401] C7 x C14
61) [2732, 736, 1556] C7 x C14 32) [389, 368, 33467] C7 x C14
62) [2913, 55, 28] C7 x C14 ---) [28, 110, 2913] C14
63) [3049, 1795, 634000] C7 x C14 ---) [1585, 1771, 780544] C14 x C14
64) [3493, 494, 5121] C7 x C14 37) [569, 247, 13972] C7 x C14
65) [4748, 1408, 262964] C7 x C14 33) [389, 704, 58163] C7 x C14
66) [5501, 521, 473] C7 x C14 ---) [473, 1042, 269549] C7 x C42
67) [5788, 4066, 220401] C7 x C14 60) [2721, 2033, 978172] C7 x C14
68) [5932, 1454, 48037] C7 x C14 34) [397, 727, 120123] C7 x C14
69) [6013, 346, 5877] C7 x C14 43) [653, 173, 6013] C7 x C14
70) [6577, 229, 11466] C7 x C14 ---) [104, 458, 6577] C14 x C14
71) [8661, 269, 15925] C7 x C14 ---) [13, 229, 8661] C14
72) [9049, 107, 600] C7 x C14 ---) [24, 214, 9049] C14
73) [9101, 161, 4205] C7 x C14 ---) [5, 193, 9101] C14
74) [9788, 1310, 389873] C7 x C14 45) [737, 655, 9788] C7 x C14
75) [11549, 1433, 510485] C7 x C14 ---) [965, 2866, 11549] C14 x C14
76) [13701, 353, 325] C7 x C14 ---) [13, 289, 13701] C14
77) [14629, 2458, 1451925] C7 x C14 44) [717, 1229, 14629] C7 x C14
78) [16556, 538, 6137] C7 x C14 ---) [17, 269, 16556] C14
79) [22289, 247, 9680] C7 x C14 ---) [5, 301, 22289] C14
80) [23581, 634, 6165] C7 x C14 ---) [685, 317, 23581] C14 x C14
81) [23857, 223, 6468] C7 x C14 ---) [33, 446, 23857] C14
82) [24473, 289, 14762] C7 x C14 ---) [488, 578, 24473] C14 x C14
83) [28369, 169, 48] C7 x C14 ---) [12, 338, 28369] C14
84) [38492, 1280, 371108] C7 x C14 ---) [257, 640, 9623] C7 x C42
85) [45749, 413, 31205] C7 x C14 ---) [5, 449, 45749] C14
86) [47017, 289, 9126] C7 x C14 14) [24, 578, 47017] C7 x C14
87) [47041, 301, 10890] C7 x C14 ---) [40, 602, 47041] C14 x C14
88) [48733, 761, 35131] C7 x C14 22) [76, 1522, 438597] C7 x C14
89) [48761, 245, 2816] C7 x C14 21) [44, 490, 48761] C7 x C14
90) [54617, 1445, 508352] C7 x C14 28) [188, 2890, 54617] C7 x C14
91) [83084, 1010, 171941] C7 x C14 16) [29, 505, 20771] C7 x C14
92) [95617, 313, 588] C7 x C14 7) [12, 626, 95617] C7 x C14
93) [103724, 1610, 544301] C7 x C14 18) [29, 805, 25931] C7 x C14
94) [134812, 442, 15138] C7 x C14 3) [8, 442, 33703] C7 x C14
95) [139837, 433, 11913] C7 x C14 19) [33, 866, 139837] C7 x C14
96) [149433, 401, 2842] C7 x C14 ---) [232, 802, 149433] C7 x C28
97) [174089, 419, 368] C7 x C14 24) [92, 838, 174089] C7 x C14
98) [239497, 707, 65088] C7 x C14 26) [113, 1414, 239497] C7 x C14
99) [250689, 1763, 212992] C7 x C14 9) [13, 1741, 250689] C7 x C14
100) [399289, 1347, 353780] C7 x C14 1) [5, 1381, 399289] C7 x C14
101) [423769, 763, 39600] C7 x C14 20) [44, 1526, 423769] C7 x C14
102) [463857, 2033, 917308] C7 x C14 15) [28, 4066, 463857] C7 x C14
103) [468577, 1378, 6144] C7 x C14 13) [24, 2756, 1874308] C7 x C14
104) [549329, 823, 32000] C7 x C14 2) [5, 1646, 549329] C7 x C14
105) [1373041, 1177, 3072] C7 x C14 8) [12, 2354, 1373041] C7 x C14