Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C7 x C56 non-normal (D4) quartic CM field invariants: 97 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 5414, 7186729] C7 x C56 96) [7186729, 2707, 35280] C7 x C56
2) [8, 6822, 11630313] C7 x C56 ---) [1292257, 3411, 1152] C14 x C28
3) [12, 1990, 986137] C7 x C56 94) [986137, 995, 972] C7 x C56
4) [13, 2334, 1361681] C7 x C56 95) [1361681, 1167, 52] C7 x C56
5) [13, 5390, 7195633] C7 x C56 97) [7195633, 2695, 16848] C7 x C56
6) [21, 529, 68443] C7 x C56 ---) [273772, 1058, 6069] C14 x C84
7) [37, 459, 47777] C7 x C56 ---) [47777, 918, 19573] C14 x C28
8) [57, 2802, 1960749] C7 x C56 ---) [217861, 1401, 513] C14 x C252
9) [61, 274, 13828] C7 x C56 ---) [3457, 548, 19764] C14 x C28
10) [85, 5254, 4268169] C7 x C56 ---) [474241, 2627, 658240] C7 x C28
11) [133, 933, 215993] C7 x C56 ---) [215993, 1866, 6517] C14 x C28
12) [253, 422, 24028] C7 x C56 ---) [24028, 844, 81972] C14 x C28
13) [293, 854, 177641] C7 x C56 ---) [177641, 427, 1172] C7 x C112
14) [293, 397, 12959] C7 x C56 64) [51836, 794, 105773] C7 x C56
15) [293, 1273, 14783] C7 x C56 ---) [59132, 2546, 1561397] C7 x C168
16) [301, 1361, 39799] C7 x C56 ---) [159196, 2722, 1693125] C14 x C28
17) [505, 458, 1941] C7 x C56 ---) [1941, 229, 12625] C7 x C14
18) [557, 929, 215621] C7 x C56 82) [215621, 1858, 557] C7 x C56
19) [577, 3947, 1920064] C7 x C56 ---) [30001, 2227, 332352] C56
20) [577, 1182, 266193] C7 x C56 ---) [29577, 591, 20772] C56
21) [1009, 478, 40977] C7 x C56 ---) [4553, 239, 4036] C112
22) [1009, 271, 18108] C7 x C56 ---) [2012, 542, 1009] C56
23) [1009, 893, 15472] C7 x C56 ---) [3868, 1786, 735561] C56
24) [1021, 2699, 1635073] C7 x C56 ---) [13513, 2701, 36756] C14 x C28
25) [1133, 502, 44873] C7 x C56 ---) [44873, 251, 4532] C14 x C28
26) [1293, 4789, 15661] C7 x C56 ---) [15661, 2609, 570213] C7 x C168
27) [1601, 223, 12032] C7 x C56 ---) [188, 446, 1601] C56
28) [1601, 409, 22208] C7 x C56 ---) [1388, 818, 78449] C56
29) [1761, 678, 2217] C7 x C56 ---) [2217, 339, 28176] C2 x C28
30) [1761, 1599, 406308] C7 x C56 ---) [2073, 1563, 112704] C2 x C28
31) [2029, 1021, 247929] C7 x C56 ---) [2049, 2042, 50725] C56
32) [2029, 57, 305] C7 x C56 ---) [305, 114, 2029] C2 x C56
33) [2029, 149, 985] C7 x C56 ---) [985, 298, 18261] C336
34) [2029, 285, 7625] C7 x C56 ---) [305, 570, 50725] C2 x C56
35) [2029, 337, 3537] C7 x C56 ---) [393, 674, 99421] C56
36) [2029, 137, 127] C7 x C56 ---) [508, 274, 18261] C56
37) [2129, 2223, 59692] C7 x C56 66) [59692, 4446, 4702961] C7 x C56
38) [2137, 3684, 467411] C7 x C56 ---) [38156, 7368, 11702212] C7 x C7 x C56
39) [2757, 377, 1759] C7 x C56 ---) [7036, 754, 135093] C14 x C28
40) [2913, 446, 3121] C7 x C56 ---) [3121, 223, 11652] C280
41) [5233, 1852, 726651] C7 x C56 59) [35884, 3704, 523300] C7 x C56
42) [5273, 436, 67] C7 x C56 ---) [268, 872, 189828] C56
43) [5849, 6829, 2532908] C7 x C56 63) [51692, 13658, 36503609] C7 x C56
44) [8097, 1019, 14656] C7 x C56 ---) [229, 1093, 202425] C168
45) [8465, 111, 964] C7 x C56 ---) [241, 222, 8465] C28
46) [9029, 1362, 427645] C7 x C56 ---) [445, 681, 9029] C2 x C112
47) [9173, 103, 359] C7 x C56 ---) [1436, 206, 9173] C7 x C168
48) [9208, 598, 52569] C7 x C56 ---) [649, 299, 9208] C2 x C28
49) [10713, 830, 817] C7 x C56 ---) [817, 415, 42852] C2 x C140
50) [14201, 791, 124468] C7 x C56 ---) [37, 441, 14201] C56
51) [17413, 215, 7203] C7 x C56 ---) [12, 430, 17413] C2 x C28
52) [18053, 908, 43639] C7 x C56 ---) [604, 1816, 649908] C14 x C28
53) [18808, 268, 13254] C7 x C56 ---) [24, 212, 4702] C2 x C28
54) [21832, 1414, 150537] C7 x C56 ---) [417, 707, 87328] C7 x C14
55) [24604, 314, 45] C7 x C56 ---) [5, 157, 6151] C56
56) [25084, 3790, 3189681] C7 x C56 ---) [2929, 1895, 100336] C14 x C56
57) [28869, 802, 45325] C7 x C56 ---) [37, 401, 28869] C56
58) [33793, 898, 66429] C7 x C56 ---) [61, 449, 33793] C56
59) [35884, 3704, 523300] C7 x C56 41) [5233, 1852, 726651] C7 x C56
60) [42577, 229, 2466] C7 x C56 ---) [1096, 458, 42577] C14 x C112
61) [44857, 379, 24696] C7 x C56 ---) [56, 758, 44857] C2 x C28
62) [49553, 1567, 6848] C7 x C56 ---) [428, 3134, 2428097] C14 x C28
63) [51692, 13658, 36503609] C7 x C56 43) [5849, 6829, 2532908] C7 x C56
64) [51836, 794, 105773] C7 x C56 14) [293, 397, 12959] C7 x C56
65) [52009, 1382, 9400] C7 x C56 ---) [376, 2764, 1872324] C56
66) [59692, 4446, 4702961] C7 x C56 37) [2129, 2223, 59692] C7 x C56
67) [64681, 397, 23232] C7 x C56 ---) [12, 794, 64681] C2 x C28
68) [67217, 313, 7688] C7 x C56 ---) [8, 626, 67217] C56
69) [70897, 267, 98] C7 x C56 ---) [8, 534, 70897] C2 x C28
70) [85121, 323, 4802] C7 x C56 ---) [8, 646, 85121] C56
71) [85317, 309, 2541] C7 x C56 ---) [21, 618, 85317] C2 x C28
72) [93817, 395, 15552] C7 x C56 ---) [12, 790, 93817] C2 x C28
73) [99001, 1387, 456192] C7 x C56 ---) [88, 2774, 99001] C2 x C28
74) [99001, 315, 56] C7 x C56 ---) [56, 630, 99001] C2 x C28
75) [140009, 403, 5600] C7 x C56 ---) [56, 806, 140009] C56
76) [144649, 387, 1280] C7 x C56 ---) [5, 774, 144649] C56
77) [150229, 1193, 17797] C7 x C56 ---) [13, 821, 150229] C28
78) [160057, 1271, 43732] C7 x C56 ---) [13, 821, 160057] C56
79) [173276, 872, 16820] C7 x C56 ---) [5, 436, 43319] C56
80) [194156, 1432, 318500] C7 x C56 ---) [65, 716, 48539] C2 x C56
81) [208337, 1826, 221] C7 x C56 ---) [221, 913, 208337] C14 x C56
82) [215621, 1858, 557] C7 x C56 18) [557, 929, 215621] C7 x C56
83) [254521, 1024, 7623] C7 x C56 ---) [28, 2048, 1018084] C2 x C28
84) [296201, 3947, 266240] C7 x C56 ---) [65, 2471, 1184804] C112
85) [297793, 613, 19494] C7 x C56 ---) [24, 1226, 297793] C56
86) [303449, 563, 3380] C7 x C56 ---) [5, 1126, 303449] C56
87) [353593, 811, 76032] C7 x C56 ---) [33, 1622, 353593] C2 x C28
88) [368392, 1314, 63257] C7 x C56 ---) [17, 657, 92098] C7 x C14
89) [417577, 1075, 184512] C7 x C56 ---) [12, 2150, 417577] C56
90) [419449, 781, 47628] C7 x C56 ---) [12, 1562, 419449] C56
91) [534349, 737, 2205] C7 x C56 ---) [5, 1474, 534349] C56
92) [554069, 1133, 182405] C7 x C56 ---) [5, 1489, 554069] C56
93) [812069, 1733, 547805] C7 x C56 ---) [5, 1889, 812069] C56
94) [986137, 995, 972] C7 x C56 3) [12, 1990, 986137] C7 x C56
95) [1361681, 1167, 52] C7 x C56 4) [13, 2334, 1361681] C7 x C56
96) [7186729, 2707, 35280] C7 x C56 1) [5, 5414, 7186729] C7 x C56
97) [7195633, 2695, 16848] C7 x C56 5) [13, 5390, 7195633] C7 x C56