A quartic CM field field K is represented by invariants [D,A,B], where
K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real
quadratic subfield (hence A2-4B = m2D for some m).
Class number:
[Non-normal]
[Cyclic]
Class group C7 x C56 non-normal (D4) quartic CM field invariants: 97 fields
K |
Quartic invariants |
Cl(OK) |
Igusa invariants |
Kr |
Reflex invariants |
Cl(OKr) |
Igusa invariants |
1) |
[5, 5414, 7186729] |
C7 x C56 |
|
96) |
[7186729, 2707, 35280] |
C7 x C56 |
2) |
[8, 6822, 11630313] |
C7 x C56 |
|
---) |
[1292257, 3411, 1152] |
C14 x C28 |
3) |
[12, 1990, 986137] |
C7 x C56 |
|
94) |
[986137, 995, 972] |
C7 x C56 |
4) |
[13, 2334, 1361681] |
C7 x C56 |
|
95) |
[1361681, 1167, 52] |
C7 x C56 |
5) |
[13, 5390, 7195633] |
C7 x C56 |
|
97) |
[7195633, 2695, 16848] |
C7 x C56 |
6) |
[21, 529, 68443] |
C7 x C56 |
|
---) |
[273772, 1058, 6069] |
C14 x C84 |
7) |
[37, 459, 47777] |
C7 x C56 |
|
---) |
[47777, 918, 19573] |
C14 x C28 |
8) |
[57, 2802, 1960749] |
C7 x C56 |
|
---) |
[217861, 1401, 513] |
C14 x C252 |
9) |
[61, 274, 13828] |
C7 x C56 |
|
---) |
[3457, 548, 19764] |
C14 x C28 |
10) |
[85, 5254, 4268169] |
C7 x C56 |
|
---) |
[474241, 2627, 658240] |
C7 x C28 |
11) |
[133, 933, 215993] |
C7 x C56 |
|
---) |
[215993, 1866, 6517] |
C14 x C28 |
12) |
[253, 422, 24028] |
C7 x C56 |
|
---) |
[24028, 844, 81972] |
C14 x C28 |
13) |
[293, 854, 177641] |
C7 x C56 |
|
---) |
[177641, 427, 1172] |
C7 x C112 |
14) |
[293, 397, 12959] |
C7 x C56 |
|
64) |
[51836, 794, 105773] |
C7 x C56 |
15) |
[293, 1273, 14783] |
C7 x C56 |
|
---) |
[59132, 2546, 1561397] |
C7 x C168 |
16) |
[301, 1361, 39799] |
C7 x C56 |
|
---) |
[159196, 2722, 1693125] |
C14 x C28 |
17) |
[505, 458, 1941] |
C7 x C56 |
|
---) |
[1941, 229, 12625] |
C7 x C14 |
18) |
[557, 929, 215621] |
C7 x C56 |
|
82) |
[215621, 1858, 557] |
C7 x C56 |
19) |
[577, 3947, 1920064] |
C7 x C56 |
|
---) |
[30001, 2227, 332352] |
C56 |
20) |
[577, 1182, 266193] |
C7 x C56 |
|
---) |
[29577, 591, 20772] |
C56 |
21) |
[1009, 478, 40977] |
C7 x C56 |
|
---) |
[4553, 239, 4036] |
C112 |
22) |
[1009, 271, 18108] |
C7 x C56 |
|
---) |
[2012, 542, 1009] |
C56 |
23) |
[1009, 893, 15472] |
C7 x C56 |
|
---) |
[3868, 1786, 735561] |
C56 |
24) |
[1021, 2699, 1635073] |
C7 x C56 |
|
---) |
[13513, 2701, 36756] |
C14 x C28 |
25) |
[1133, 502, 44873] |
C7 x C56 |
|
---) |
[44873, 251, 4532] |
C14 x C28 |
26) |
[1293, 4789, 15661] |
C7 x C56 |
|
---) |
[15661, 2609, 570213] |
C7 x C168 |
27) |
[1601, 223, 12032] |
C7 x C56 |
|
---) |
[188, 446, 1601] |
C56 |
28) |
[1601, 409, 22208] |
C7 x C56 |
|
---) |
[1388, 818, 78449] |
C56 |
29) |
[1761, 678, 2217] |
C7 x C56 |
|
---) |
[2217, 339, 28176] |
C2 x C28 |
30) |
[1761, 1599, 406308] |
C7 x C56 |
|
---) |
[2073, 1563, 112704] |
C2 x C28 |
31) |
[2029, 1021, 247929] |
C7 x C56 |
■ |
---) |
[2049, 2042, 50725] |
C56 |
32) |
[2029, 57, 305] |
C7 x C56 |
|
---) |
[305, 114, 2029] |
C2 x C56 |
33) |
[2029, 149, 985] |
C7 x C56 |
|
---) |
[985, 298, 18261] |
C336 |
34) |
[2029, 285, 7625] |
C7 x C56 |
|
---) |
[305, 570, 50725] |
C2 x C56 |
35) |
[2029, 337, 3537] |
C7 x C56 |
|
---) |
[393, 674, 99421] |
C56 |
36) |
[2029, 137, 127] |
C7 x C56 |
|
---) |
[508, 274, 18261] |
C56 |
37) |
[2129, 2223, 59692] |
C7 x C56 |
|
66) |
[59692, 4446, 4702961] |
C7 x C56 |
38) |
[2137, 3684, 467411] |
C7 x C56 |
|
---) |
[38156, 7368, 11702212] |
C7 x C7 x C56 |
39) |
[2757, 377, 1759] |
C7 x C56 |
|
---) |
[7036, 754, 135093] |
C14 x C28 |
40) |
[2913, 446, 3121] |
C7 x C56 |
|
---) |
[3121, 223, 11652] |
C280 |
41) |
[5233, 1852, 726651] |
C7 x C56 |
|
59) |
[35884, 3704, 523300] |
C7 x C56 |
42) |
[5273, 436, 67] |
C7 x C56 |
|
---) |
[268, 872, 189828] |
C56 |
43) |
[5849, 6829, 2532908] |
C7 x C56 |
|
63) |
[51692, 13658, 36503609] |
C7 x C56 |
44) |
[8097, 1019, 14656] |
C7 x C56 |
|
---) |
[229, 1093, 202425] |
C168 |
■ |
45) |
[8465, 111, 964] |
C7 x C56 |
■ |
---) |
[241, 222, 8465] |
C28 |
■ |
46) |
[9029, 1362, 427645] |
C7 x C56 |
|
---) |
[445, 681, 9029] |
C2 x C112 |
47) |
[9173, 103, 359] |
C7 x C56 |
|
---) |
[1436, 206, 9173] |
C7 x C168 |
48) |
[9208, 598, 52569] |
C7 x C56 |
|
---) |
[649, 299, 9208] |
C2 x C28 |
49) |
[10713, 830, 817] |
C7 x C56 |
|
---) |
[817, 415, 42852] |
C2 x C140 |
50) |
[14201, 791, 124468] |
C7 x C56 |
|
---) |
[37, 441, 14201] |
C56 |
51) |
[17413, 215, 7203] |
C7 x C56 |
|
---) |
[12, 430, 17413] |
C2 x C28 |
52) |
[18053, 908, 43639] |
C7 x C56 |
|
---) |
[604, 1816, 649908] |
C14 x C28 |
53) |
[18808, 268, 13254] |
C7 x C56 |
|
---) |
[24, 212, 4702] |
C2 x C28 |
54) |
[21832, 1414, 150537] |
C7 x C56 |
|
---) |
[417, 707, 87328] |
C7 x C14 |
55) |
[24604, 314, 45] |
C7 x C56 |
|
---) |
[5, 157, 6151] |
C56 |
56) |
[25084, 3790, 3189681] |
C7 x C56 |
|
---) |
[2929, 1895, 100336] |
C14 x C56 |
57) |
[28869, 802, 45325] |
C7 x C56 |
|
---) |
[37, 401, 28869] |
C56 |
58) |
[33793, 898, 66429] |
C7 x C56 |
|
---) |
[61, 449, 33793] |
C56 |
■ |
59) |
[35884, 3704, 523300] |
C7 x C56 |
|
41) |
[5233, 1852, 726651] |
C7 x C56 |
60) |
[42577, 229, 2466] |
C7 x C56 |
|
---) |
[1096, 458, 42577] |
C14 x C112 |
61) |
[44857, 379, 24696] |
C7 x C56 |
|
---) |
[56, 758, 44857] |
C2 x C28 |
62) |
[49553, 1567, 6848] |
C7 x C56 |
|
---) |
[428, 3134, 2428097] |
C14 x C28 |
63) |
[51692, 13658, 36503609] |
C7 x C56 |
|
43) |
[5849, 6829, 2532908] |
C7 x C56 |
64) |
[51836, 794, 105773] |
C7 x C56 |
|
14) |
[293, 397, 12959] |
C7 x C56 |
65) |
[52009, 1382, 9400] |
C7 x C56 |
|
---) |
[376, 2764, 1872324] |
C56 |
66) |
[59692, 4446, 4702961] |
C7 x C56 |
|
37) |
[2129, 2223, 59692] |
C7 x C56 |
67) |
[64681, 397, 23232] |
C7 x C56 |
|
---) |
[12, 794, 64681] |
C2 x C28 |
68) |
[67217, 313, 7688] |
C7 x C56 |
|
---) |
[8, 626, 67217] |
C56 |
69) |
[70897, 267, 98] |
C7 x C56 |
|
---) |
[8, 534, 70897] |
C2 x C28 |
70) |
[85121, 323, 4802] |
C7 x C56 |
|
---) |
[8, 646, 85121] |
C56 |
71) |
[85317, 309, 2541] |
C7 x C56 |
|
---) |
[21, 618, 85317] |
C2 x C28 |
72) |
[93817, 395, 15552] |
C7 x C56 |
|
---) |
[12, 790, 93817] |
C2 x C28 |
73) |
[99001, 1387, 456192] |
C7 x C56 |
|
---) |
[88, 2774, 99001] |
C2 x C28 |
74) |
[99001, 315, 56] |
C7 x C56 |
|
---) |
[56, 630, 99001] |
C2 x C28 |
75) |
[140009, 403, 5600] |
C7 x C56 |
|
---) |
[56, 806, 140009] |
C56 |
76) |
[144649, 387, 1280] |
C7 x C56 |
|
---) |
[5, 774, 144649] |
C56 |
77) |
[150229, 1193, 17797] |
C7 x C56 |
■ |
---) |
[13, 821, 150229] |
C28 |
■ |
78) |
[160057, 1271, 43732] |
C7 x C56 |
|
---) |
[13, 821, 160057] |
C56 |
■ |
79) |
[173276, 872, 16820] |
C7 x C56 |
|
---) |
[5, 436, 43319] |
C56 |
80) |
[194156, 1432, 318500] |
C7 x C56 |
|
---) |
[65, 716, 48539] |
C2 x C56 |
81) |
[208337, 1826, 221] |
C7 x C56 |
|
---) |
[221, 913, 208337] |
C14 x C56 |
82) |
[215621, 1858, 557] |
C7 x C56 |
|
18) |
[557, 929, 215621] |
C7 x C56 |
83) |
[254521, 1024, 7623] |
C7 x C56 |
|
---) |
[28, 2048, 1018084] |
C2 x C28 |
84) |
[296201, 3947, 266240] |
C7 x C56 |
|
---) |
[65, 2471, 1184804] |
C112 |
85) |
[297793, 613, 19494] |
C7 x C56 |
|
---) |
[24, 1226, 297793] |
C56 |
86) |
[303449, 563, 3380] |
C7 x C56 |
|
---) |
[5, 1126, 303449] |
C56 |
87) |
[353593, 811, 76032] |
C7 x C56 |
|
---) |
[33, 1622, 353593] |
C2 x C28 |
88) |
[368392, 1314, 63257] |
C7 x C56 |
|
---) |
[17, 657, 92098] |
C7 x C14 |
89) |
[417577, 1075, 184512] |
C7 x C56 |
|
---) |
[12, 2150, 417577] |
C56 |
90) |
[419449, 781, 47628] |
C7 x C56 |
|
---) |
[12, 1562, 419449] |
C56 |
91) |
[534349, 737, 2205] |
C7 x C56 |
|
---) |
[5, 1474, 534349] |
C56 |
92) |
[554069, 1133, 182405] |
C7 x C56 |
|
---) |
[5, 1489, 554069] |
C56 |
93) |
[812069, 1733, 547805] |
C7 x C56 |
|
---) |
[5, 1889, 812069] |
C56 |
94) |
[986137, 995, 972] |
C7 x C56 |
|
3) |
[12, 1990, 986137] |
C7 x C56 |
95) |
[1361681, 1167, 52] |
C7 x C56 |
|
4) |
[13, 2334, 1361681] |
C7 x C56 |
96) |
[7186729, 2707, 35280] |
C7 x C56 |
|
1) |
[5, 5414, 7186729] |
C7 x C56 |
97) |
[7195633, 2695, 16848] |
C7 x C56 |
|
5) |
[13, 5390, 7195633] |
C7 x C56 |