Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C7 x C84 non-normal (D4) quartic CM field invariants: 152 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 6038, 9051641] C7 x C84 ---) [9051641, 3019, 15680] C7 x C168
2) [8, 3018, 1442449] C7 x C84 145) [1442449, 1509, 208658] C7 x C84
3) [8, 8102, 15853033] C7 x C84 152) [15853033, 4051, 139392] C7 x C84
4) [8, 10790, 28949225] C7 x C84 ---) [1157969, 5395, 39200] C14 x C42
5) [28, 2454, 1491977] C7 x C84 147) [1491977, 1227, 3388] C7 x C84
6) [40, 1306, 414849] C7 x C84 ---) [414849, 653, 2890] C7 x C42
7) [88, 4486, 5025417] C7 x C84 ---) [5025417, 2243, 1408] C14 x C42
8) [136, 3790, 3451761] C7 x C84 ---) [383529, 1895, 34816] C7 x C42
9) [209, 1162, 330037] C7 x C84 131) [330037, 581, 1881] C7 x C84
10) [209, 5414, 4706153] C7 x C84 151) [4706153, 2707, 655424] C7 x C84
11) [233, 3990, 2772153] C7 x C84 ---) [308017, 1995, 301968] C14 x C42
12) [253, 1713, 732011] C7 x C84 ---) [59756, 3426, 6325] C14 x C42
13) [253, 3166, 2178001] C7 x C84 101) [44449, 1583, 81972] C7 x C84
14) [316, 4726, 5078169] C7 x C84 ---) [564241, 2363, 126400] C14 x C28
15) [577, 1038, 186273] C7 x C84 ---) [20697, 519, 20772] C84
16) [577, 1115, 134100] C7 x C84 ---) [149, 1065, 14425] C2 x C42
17) [577, 907, 188208] C7 x C84 ---) [5228, 1814, 69817] C84
18) [577, 538, 71784] C7 x C84 ---) [7976, 1076, 2308] C168
19) [577, 1686, 378297] C7 x C84 ---) [42033, 843, 83088] C84
20) [593, 1186, 159517] C7 x C84 ---) [159517, 593, 48033] C14 x C84
21) [653, 2322, 1347268] C7 x C84 ---) [1993, 1278, 167168] C14 x C42
22) [673, 1388, 61011] C7 x C84 ---) [27116, 2776, 1682500] C7 x C420
23) [813, 631, 9907] C7 x C84 ---) [39628, 1262, 358533] C42 x C42
24) [853, 585, 80225] C7 x C84 ---) [3209, 1170, 21325] C14 x C42
25) [1009, 679, 115008] C7 x C84 ---) [1797, 1358, 1009] C84
26) [1009, 683, 5380] C7 x C84 ---) [1345, 1331, 197764] C6 x C84
27) [1037, 2165, 8033] C7 x C84 54) [8033, 2147, 813008] C7 x C84
28) [1133, 181, 7907] C7 x C84 ---) [31628, 362, 1133] C14 x C42
29) [1208, 2684, 1596812] C7 x C84 ---) [32588, 1342, 51038] C14 x C42
30) [1253, 411, 4327] C7 x C84 ---) [17308, 822, 151613] C14 x C42
31) [1601, 425, 12736] C7 x C84 ---) [796, 850, 129681] C84
32) [1601, 972, 42475] C7 x C84 ---) [6796, 1944, 774884] C84
33) [1741, 1394, 40113] C7 x C84 ---) [4457, 697, 111424] C14 x C42
34) [1761, 615, 58896] C7 x C84 ---) [409, 679, 112704] C84
35) [1784, 1502, 449825] C7 x C84 ---) [17993, 751, 28544] C14 x C42
36) [2029, 1402, 93717] C7 x C84 ---) [1157, 701, 99421] C168
37) [2029, 506, 13284] C7 x C84 ---) [41, 366, 32464] C2 x C42
38) [2029, 1177, 345825] C7 x C84 ---) [1537, 1343, 32464] C2 x C84
39) [2029, 341, 16389] C7 x C84 ---) [1821, 682, 50725] C84
40) [2029, 489, 34925] C7 x C84 ---) [1397, 978, 99421] C84
41) [2029, 2194, 221373] C7 x C84 ---) [2733, 1097, 245509] C84
42) [2104, 1626, 16619] C7 x C84 ---) [66476, 3252, 2577400] C14 x C42
43) [2177, 132, 2179] C7 x C84 ---) [8716, 264, 8708] C14 x C14
44) [2653, 2202, 445484] C7 x C84 ---) [2636, 1752, 766717] C42 x C42
45) [4193, 1179, 220672] C7 x C84 ---) [3448, 2358, 507353] C14 x C14
46) [4229, 373, 33725] C7 x C84 ---) [1349, 746, 4229] C84
47) [4348, 1718, 111769] C7 x C84 ---) [2281, 859, 156528] C84
48) [4348, 1058, 262449] C7 x C84 ---) [241, 529, 4348] C84
49) [5273, 107, 1544] C7 x C84 ---) [1544, 214, 5273] C2 x C84
50) [5273, 1822, 70609] C7 x C84 ---) [1441, 911, 189828] C84
51) [7057, 347, 14224] C7 x C84 ---) [889, 694, 63513] C28
52) [7057, 346, 1701] C7 x C84 ---) [21, 173, 7057] C28
53) [7736, 1510, 74921] C7 x C84 ---) [1529, 755, 123776] C2 x C42
54) [8033, 2147, 813008] C7 x C84 27) [1037, 2165, 8033] C7 x C84
55) [8104, 152, 3750] C7 x C84 ---) [24, 160, 2026] C42
56) [8185, 1118, 181521] C7 x C84 ---) [249, 559, 32740] C42
57) [8185, 249, 13454] C7 x C84 ---) [56, 498, 8185] C42
58) [8465, 1779, 738304] C7 x C84 ---) [721, 2583, 1659140] C42
59) [9004, 3326, 2441425] C7 x C84 ---) [1993, 1663, 81036] C84
60) [9029, 3049, 2267669] C7 x C84 ---) [1349, 2029, 9029] C84
61) [9208, 644, 20812] C7 x C84 ---) [172, 322, 20718] C2 x C42
62) [9208, 428, 8964] C7 x C84 ---) [249, 214, 9208] C2 x C42
63) [9505, 911, 91044] C7 x C84 ---) [281, 1607, 38020] C42
64) [9868, 1422, 466049] C7 x C84 ---) [881, 711, 9868] C84
65) [9868, 3752, 2720068] C7 x C84 ---) [2353, 1876, 199827] C2 x C84
66) [10313, 915, 468] C7 x C84 ---) [13, 729, 92817] C2 x C42
67) [10957, 1537, 587853] C7 x C84 ---) [1333, 3074, 10957] C84
68) [11053, 181, 5427] C7 x C84 ---) [268, 362, 11053] C2 x C42
69) [11053, 107, 99] C7 x C84 ---) [44, 214, 11053] C2 x C42
70) [12469, 133, 1305] C7 x C84 ---) [145, 266, 12469] C168
71) [12577, 850, 130317] C7 x C84 ---) [1077, 425, 12577] C7 x C28
72) [13313, 387, 7488] C7 x C84 ---) [13, 774, 119817] C2 x C42
73) [13701, 386, 23548] C7 x C84 ---) [28, 652, 13701] C2 x C42
74) [17413, 1698, 93933] C7 x C84 ---) [213, 849, 156717] C2 x C42
75) [17569, 268, 387] C7 x C84 ---) [172, 536, 70276] C84
76) [17569, 1513, 567900] C7 x C84 ---) [2524, 3026, 17569] C84
77) [17569, 1726, 727200] C7 x C84 ---) [808, 3452, 70276] C168
78) [18808, 324, 7436] C7 x C84 ---) [44, 162, 4702] C2 x C42
79) [18808, 280, 792] C7 x C84 ---) [88, 140, 4702] C2 x C42
80) [20156, 350, 10469] C7 x C84 ---) [29, 175, 5039] C84
81) [20156, 372, 14440] C7 x C84 ---) [40, 186, 5039] C2 x C84
82) [20785, 338, 7776] C7 x C84 ---) [24, 676, 83140] C42
83) [20785, 223, 7236] C7 x C84 ---) [201, 446, 20785] C42
84) [21581, 147, 7] C7 x C84 ---) [28, 294, 21581] C2 x C42
85) [22289, 896, 103] C7 x C84 ---) [412, 1792, 802404] C2 x C42
86) [22417, 151, 96] C7 x C84 ---) [24, 302, 22417] C42
87) [22897, 199, 4176] C7 x C84 ---) [29, 398, 22897] C84
88) [22972, 3638, 793] C7 x C84 ---) [793, 1819, 826992] C2 x C168
89) [23293, 2003, 18873] C7 x C84 ---) [233, 1653, 372688] C14 x C42
90) [23629, 642, 8525] C7 x C84 ---) [341, 321, 23629] C84
91) [24604, 316, 360] C7 x C84 ---) [40, 158, 6151] C2 x C84
92) [25293, 161, 157] C7 x C84 ---) [157, 322, 25293] C84
93) [26713, 603, 84224] C7 x C84 ---) [329, 1206, 26713] C84
94) [28869, 209, 3703] C7 x C84 ---) [28, 418, 28869] C2 x C42
95) [31676, 364, 25205] C7 x C84 ---) [5, 382, 31676] C84
96) [33793, 863, 177744] C7 x C84 ---) [21, 529, 33793] C2 x C42
97) [33793, 239, 5832] C7 x C84 ---) [8, 478, 33793] C84
98) [35368, 1130, 913] C7 x C84 ---) [913, 565, 79578] C7 x C42
99) [37189, 599, 6025] C7 x C84 ---) [241, 1198, 334701] C14 x C42
100) [43361, 1042, 97997] C7 x C84 ---) [53, 521, 43361] C84
101) [44449, 1583, 81972] C7 x C84 13) [253, 3166, 2178001] C7 x C84
102) [44857, 307, 12348] C7 x C84 ---) [28, 614, 44857] C2 x C42
103) [45217, 213, 38] C7 x C84 ---) [152, 426, 45217] C2 x C42
104) [51893, 1042, 63869] C7 x C84 ---) [221, 521, 51893] C2 x C84
105) [57289, 970, 6069] C7 x C84 ---) [21, 485, 57289] C2 x C42
106) [60361, 247, 162] C7 x C84 ---) [8, 494, 60361] C2 x C42
107) [64508, 656, 43076] C7 x C84 ---) [89, 328, 16127] C84
108) [69517, 700, 52983] C7 x C84 ---) [28, 1400, 278068] C2 x C42
109) [76217, 277, 128] C7 x C84 ---) [8, 554, 76217] C2 x C42
110) [89329, 299, 18] C7 x C84 ---) [8, 598, 89329] C84
111) [95896, 1244, 3300] C7 x C84 ---) [33, 622, 95896] C2 x C42
112) [112604, 706, 12005] C7 x C84 ---) [5, 353, 28151] C84
113) [122753, 2459, 744464] C7 x C84 ---) [161, 4019, 1964048] C84
114) [125564, 766, 21125] C7 x C84 ---) [5, 383, 31391] C84
115) [127837, 361, 621] C7 x C84 ---) [69, 722, 127837] C84
116) [131201, 383, 3872] C7 x C84 ---) [8, 766, 131201] C84
117) [134773, 820, 33327] C7 x C84 ---) [28, 1640, 539092] C2 x C42
118) [137809, 1562, 58725] C7 x C84 ---) [29, 781, 137809] C84
119) [144649, 381, 128] C7 x C84 ---) [8, 762, 144649] C2 x C42
120) [154844, 1376, 318500] C7 x C84 ---) [65, 688, 38711] C2 x C84
121) [154897, 2131, 167184] C7 x C84 ---) [129, 4262, 3872425] C84
122) [154897, 507, 25538] C7 x C84 ---) [8, 1014, 154897] C84
123) [160057, 403, 588] C7 x C84 ---) [12, 806, 160057] C2 x C42
124) [172789, 1133, 277725] C7 x C84 ---) [21, 1909, 172789] C2 x C42
125) [172789, 1690, 22869] C7 x C84 ---) [21, 845, 172789] C2 x C42
126) [175964, 856, 7220] C7 x C84 ---) [5, 428, 43991] C84
127) [179489, 431, 1568] C7 x C84 ---) [8, 862, 179489] C84
128) [234524, 992, 11492] C7 x C84 ---) [17, 496, 58631] C84
129) [294433, 2099, 438976] C7 x C84 ---) [76, 4198, 2649897] C2 x C42
130) [295985, 583, 10976] C7 x C84 ---) [56, 1166, 295985] C7 x C42
131) [330037, 581, 1881] C7 x C84 9) [209, 1162, 330037] C7 x C84
132) [349229, 2413, 669877] C7 x C84 ---) [13, 1221, 349229] C84
133) [443953, 2283, 304128] C7 x C84 ---) [33, 3215, 1775812] C84
134) [492124, 1472, 49572] C7 x C84 ---) [17, 736, 123031] C84
135) [524689, 983, 110400] C7 x C84 ---) [69, 1966, 524689] C14 x C42
136) [553489, 887, 58320] C7 x C84 ---) [5, 1581, 553489] C84
137) [623401, 805, 6156] C7 x C84 ---) [76, 1610, 623401] C84
138) [727721, 1555, 422576] C7 x C84 ---) [44, 3110, 727721] C2 x C42
139) [744577, 2595, 8208] C7 x C84 ---) [57, 5190, 6701193] C2 x C42
140) [820513, 1007, 48384] C7 x C84 ---) [21, 2014, 820513] C14 x C42
141) [884497, 943, 1188] C7 x C84 ---) [33, 1886, 884497] C84
142) [982441, 1171, 97200] C7 x C84 ---) [12, 2342, 982441] C2 x C42
143) [1016373, 1037, 14749] C7 x C84 ---) [301, 2074, 1016373] C14 x C42
144) [1377401, 1547, 253952] C7 x C84 ---) [248, 3094, 1377401] C14 x C42
145) [1442449, 1509, 208658] C7 x C84 2) [8, 3018, 1442449] C7 x C84
146) [1457629, 2553, 1265045] C7 x C84 ---) [5, 2629, 1457629] C84
147) [1491977, 1227, 3388] C7 x C84 5) [28, 2454, 1491977] C7 x C84
148) [1717309, 1977, 547805] C7 x C84 ---) [5, 2621, 1717309] C84
149) [1941029, 1397, 2645] C7 x C84 ---) [5, 2794, 1941029] C84
150) [2657681, 2135, 475136] C7 x C84 ---) [29, 4270, 2657681] C7 x C42
151) [4706153, 2707, 655424] C7 x C84 10) [209, 5414, 4706153] C7 x C84
152) [15853033, 4051, 139392] C7 x C84 3) [8, 8102, 15853033] C7 x C84