A quartic CM field field K is represented by invariants [D,A,B], where
K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real
quadratic subfield (hence A2-4B = m2D for some m).
Class number:
[Non-normal]
[Cyclic]
Class group C7 x C84 non-normal (D4) quartic CM field invariants: 152 fields
K |
Quartic invariants |
Cl(OK) |
Igusa invariants |
Kr |
Reflex invariants |
Cl(OKr) |
Igusa invariants |
1) |
[5, 6038, 9051641] |
C7 x C84 |
|
---) |
[9051641, 3019, 15680] |
C7 x C168 |
2) |
[8, 3018, 1442449] |
C7 x C84 |
|
145) |
[1442449, 1509, 208658] |
C7 x C84 |
3) |
[8, 8102, 15853033] |
C7 x C84 |
|
152) |
[15853033, 4051, 139392] |
C7 x C84 |
4) |
[8, 10790, 28949225] |
C7 x C84 |
|
---) |
[1157969, 5395, 39200] |
C14 x C42 |
5) |
[28, 2454, 1491977] |
C7 x C84 |
|
147) |
[1491977, 1227, 3388] |
C7 x C84 |
6) |
[40, 1306, 414849] |
C7 x C84 |
|
---) |
[414849, 653, 2890] |
C7 x C42 |
7) |
[88, 4486, 5025417] |
C7 x C84 |
|
---) |
[5025417, 2243, 1408] |
C14 x C42 |
8) |
[136, 3790, 3451761] |
C7 x C84 |
|
---) |
[383529, 1895, 34816] |
C7 x C42 |
9) |
[209, 1162, 330037] |
C7 x C84 |
|
131) |
[330037, 581, 1881] |
C7 x C84 |
10) |
[209, 5414, 4706153] |
C7 x C84 |
|
151) |
[4706153, 2707, 655424] |
C7 x C84 |
11) |
[233, 3990, 2772153] |
C7 x C84 |
|
---) |
[308017, 1995, 301968] |
C14 x C42 |
12) |
[253, 1713, 732011] |
C7 x C84 |
|
---) |
[59756, 3426, 6325] |
C14 x C42 |
13) |
[253, 3166, 2178001] |
C7 x C84 |
|
101) |
[44449, 1583, 81972] |
C7 x C84 |
14) |
[316, 4726, 5078169] |
C7 x C84 |
|
---) |
[564241, 2363, 126400] |
C14 x C28 |
15) |
[577, 1038, 186273] |
C7 x C84 |
|
---) |
[20697, 519, 20772] |
C84 |
16) |
[577, 1115, 134100] |
C7 x C84 |
|
---) |
[149, 1065, 14425] |
C2 x C42 |
17) |
[577, 907, 188208] |
C7 x C84 |
|
---) |
[5228, 1814, 69817] |
C84 |
18) |
[577, 538, 71784] |
C7 x C84 |
|
---) |
[7976, 1076, 2308] |
C168 |
19) |
[577, 1686, 378297] |
C7 x C84 |
|
---) |
[42033, 843, 83088] |
C84 |
20) |
[593, 1186, 159517] |
C7 x C84 |
|
---) |
[159517, 593, 48033] |
C14 x C84 |
21) |
[653, 2322, 1347268] |
C7 x C84 |
|
---) |
[1993, 1278, 167168] |
C14 x C42 |
22) |
[673, 1388, 61011] |
C7 x C84 |
|
---) |
[27116, 2776, 1682500] |
C7 x C420 |
23) |
[813, 631, 9907] |
C7 x C84 |
|
---) |
[39628, 1262, 358533] |
C42 x C42 |
24) |
[853, 585, 80225] |
C7 x C84 |
|
---) |
[3209, 1170, 21325] |
C14 x C42 |
25) |
[1009, 679, 115008] |
C7 x C84 |
|
---) |
[1797, 1358, 1009] |
C84 |
26) |
[1009, 683, 5380] |
C7 x C84 |
|
---) |
[1345, 1331, 197764] |
C6 x C84 |
27) |
[1037, 2165, 8033] |
C7 x C84 |
|
54) |
[8033, 2147, 813008] |
C7 x C84 |
28) |
[1133, 181, 7907] |
C7 x C84 |
|
---) |
[31628, 362, 1133] |
C14 x C42 |
29) |
[1208, 2684, 1596812] |
C7 x C84 |
|
---) |
[32588, 1342, 51038] |
C14 x C42 |
30) |
[1253, 411, 4327] |
C7 x C84 |
|
---) |
[17308, 822, 151613] |
C14 x C42 |
31) |
[1601, 425, 12736] |
C7 x C84 |
|
---) |
[796, 850, 129681] |
C84 |
32) |
[1601, 972, 42475] |
C7 x C84 |
|
---) |
[6796, 1944, 774884] |
C84 |
33) |
[1741, 1394, 40113] |
C7 x C84 |
|
---) |
[4457, 697, 111424] |
C14 x C42 |
34) |
[1761, 615, 58896] |
C7 x C84 |
|
---) |
[409, 679, 112704] |
C84 |
35) |
[1784, 1502, 449825] |
C7 x C84 |
|
---) |
[17993, 751, 28544] |
C14 x C42 |
36) |
[2029, 1402, 93717] |
C7 x C84 |
|
---) |
[1157, 701, 99421] |
C168 |
37) |
[2029, 506, 13284] |
C7 x C84 |
|
---) |
[41, 366, 32464] |
C2 x C42 |
38) |
[2029, 1177, 345825] |
C7 x C84 |
|
---) |
[1537, 1343, 32464] |
C2 x C84 |
39) |
[2029, 341, 16389] |
C7 x C84 |
|
---) |
[1821, 682, 50725] |
C84 |
40) |
[2029, 489, 34925] |
C7 x C84 |
|
---) |
[1397, 978, 99421] |
C84 |
41) |
[2029, 2194, 221373] |
C7 x C84 |
|
---) |
[2733, 1097, 245509] |
C84 |
42) |
[2104, 1626, 16619] |
C7 x C84 |
|
---) |
[66476, 3252, 2577400] |
C14 x C42 |
43) |
[2177, 132, 2179] |
C7 x C84 |
|
---) |
[8716, 264, 8708] |
C14 x C14 |
44) |
[2653, 2202, 445484] |
C7 x C84 |
|
---) |
[2636, 1752, 766717] |
C42 x C42 |
45) |
[4193, 1179, 220672] |
C7 x C84 |
|
---) |
[3448, 2358, 507353] |
C14 x C14 |
46) |
[4229, 373, 33725] |
C7 x C84 |
|
---) |
[1349, 746, 4229] |
C84 |
47) |
[4348, 1718, 111769] |
C7 x C84 |
|
---) |
[2281, 859, 156528] |
C84 |
48) |
[4348, 1058, 262449] |
C7 x C84 |
|
---) |
[241, 529, 4348] |
C84 |
49) |
[5273, 107, 1544] |
C7 x C84 |
|
---) |
[1544, 214, 5273] |
C2 x C84 |
50) |
[5273, 1822, 70609] |
C7 x C84 |
|
---) |
[1441, 911, 189828] |
C84 |
51) |
[7057, 347, 14224] |
C7 x C84 |
■ |
---) |
[889, 694, 63513] |
C28 |
■ |
52) |
[7057, 346, 1701] |
C7 x C84 |
■ |
---) |
[21, 173, 7057] |
C28 |
■ |
53) |
[7736, 1510, 74921] |
C7 x C84 |
|
---) |
[1529, 755, 123776] |
C2 x C42 |
54) |
[8033, 2147, 813008] |
C7 x C84 |
|
27) |
[1037, 2165, 8033] |
C7 x C84 |
55) |
[8104, 152, 3750] |
C7 x C84 |
|
---) |
[24, 160, 2026] |
C42 |
56) |
[8185, 1118, 181521] |
C7 x C84 |
|
---) |
[249, 559, 32740] |
C42 |
57) |
[8185, 249, 13454] |
C7 x C84 |
|
---) |
[56, 498, 8185] |
C42 |
58) |
[8465, 1779, 738304] |
C7 x C84 |
|
---) |
[721, 2583, 1659140] |
C42 |
59) |
[9004, 3326, 2441425] |
C7 x C84 |
|
---) |
[1993, 1663, 81036] |
C84 |
60) |
[9029, 3049, 2267669] |
C7 x C84 |
|
---) |
[1349, 2029, 9029] |
C84 |
61) |
[9208, 644, 20812] |
C7 x C84 |
|
---) |
[172, 322, 20718] |
C2 x C42 |
62) |
[9208, 428, 8964] |
C7 x C84 |
|
---) |
[249, 214, 9208] |
C2 x C42 |
63) |
[9505, 911, 91044] |
C7 x C84 |
|
---) |
[281, 1607, 38020] |
C42 |
64) |
[9868, 1422, 466049] |
C7 x C84 |
|
---) |
[881, 711, 9868] |
C84 |
65) |
[9868, 3752, 2720068] |
C7 x C84 |
|
---) |
[2353, 1876, 199827] |
C2 x C84 |
66) |
[10313, 915, 468] |
C7 x C84 |
|
---) |
[13, 729, 92817] |
C2 x C42 |
67) |
[10957, 1537, 587853] |
C7 x C84 |
|
---) |
[1333, 3074, 10957] |
C84 |
68) |
[11053, 181, 5427] |
C7 x C84 |
|
---) |
[268, 362, 11053] |
C2 x C42 |
69) |
[11053, 107, 99] |
C7 x C84 |
|
---) |
[44, 214, 11053] |
C2 x C42 |
70) |
[12469, 133, 1305] |
C7 x C84 |
|
---) |
[145, 266, 12469] |
C168 |
71) |
[12577, 850, 130317] |
C7 x C84 |
|
---) |
[1077, 425, 12577] |
C7 x C28 |
■ |
72) |
[13313, 387, 7488] |
C7 x C84 |
|
---) |
[13, 774, 119817] |
C2 x C42 |
73) |
[13701, 386, 23548] |
C7 x C84 |
|
---) |
[28, 652, 13701] |
C2 x C42 |
74) |
[17413, 1698, 93933] |
C7 x C84 |
|
---) |
[213, 849, 156717] |
C2 x C42 |
75) |
[17569, 268, 387] |
C7 x C84 |
|
---) |
[172, 536, 70276] |
C84 |
76) |
[17569, 1513, 567900] |
C7 x C84 |
|
---) |
[2524, 3026, 17569] |
C84 |
77) |
[17569, 1726, 727200] |
C7 x C84 |
|
---) |
[808, 3452, 70276] |
C168 |
78) |
[18808, 324, 7436] |
C7 x C84 |
|
---) |
[44, 162, 4702] |
C2 x C42 |
79) |
[18808, 280, 792] |
C7 x C84 |
|
---) |
[88, 140, 4702] |
C2 x C42 |
80) |
[20156, 350, 10469] |
C7 x C84 |
|
---) |
[29, 175, 5039] |
C84 |
81) |
[20156, 372, 14440] |
C7 x C84 |
|
---) |
[40, 186, 5039] |
C2 x C84 |
82) |
[20785, 338, 7776] |
C7 x C84 |
|
---) |
[24, 676, 83140] |
C42 |
83) |
[20785, 223, 7236] |
C7 x C84 |
|
---) |
[201, 446, 20785] |
C42 |
84) |
[21581, 147, 7] |
C7 x C84 |
|
---) |
[28, 294, 21581] |
C2 x C42 |
85) |
[22289, 896, 103] |
C7 x C84 |
|
---) |
[412, 1792, 802404] |
C2 x C42 |
86) |
[22417, 151, 96] |
C7 x C84 |
|
---) |
[24, 302, 22417] |
C42 |
87) |
[22897, 199, 4176] |
C7 x C84 |
|
---) |
[29, 398, 22897] |
C84 |
88) |
[22972, 3638, 793] |
C7 x C84 |
|
---) |
[793, 1819, 826992] |
C2 x C168 |
89) |
[23293, 2003, 18873] |
C7 x C84 |
|
---) |
[233, 1653, 372688] |
C14 x C42 |
90) |
[23629, 642, 8525] |
C7 x C84 |
|
---) |
[341, 321, 23629] |
C84 |
91) |
[24604, 316, 360] |
C7 x C84 |
|
---) |
[40, 158, 6151] |
C2 x C84 |
92) |
[25293, 161, 157] |
C7 x C84 |
|
---) |
[157, 322, 25293] |
C84 |
93) |
[26713, 603, 84224] |
C7 x C84 |
|
---) |
[329, 1206, 26713] |
C84 |
94) |
[28869, 209, 3703] |
C7 x C84 |
|
---) |
[28, 418, 28869] |
C2 x C42 |
95) |
[31676, 364, 25205] |
C7 x C84 |
|
---) |
[5, 382, 31676] |
C84 |
96) |
[33793, 863, 177744] |
C7 x C84 |
|
---) |
[21, 529, 33793] |
C2 x C42 |
97) |
[33793, 239, 5832] |
C7 x C84 |
|
---) |
[8, 478, 33793] |
C84 |
98) |
[35368, 1130, 913] |
C7 x C84 |
|
---) |
[913, 565, 79578] |
C7 x C42 |
99) |
[37189, 599, 6025] |
C7 x C84 |
|
---) |
[241, 1198, 334701] |
C14 x C42 |
100) |
[43361, 1042, 97997] |
C7 x C84 |
|
---) |
[53, 521, 43361] |
C84 |
101) |
[44449, 1583, 81972] |
C7 x C84 |
|
13) |
[253, 3166, 2178001] |
C7 x C84 |
102) |
[44857, 307, 12348] |
C7 x C84 |
|
---) |
[28, 614, 44857] |
C2 x C42 |
103) |
[45217, 213, 38] |
C7 x C84 |
|
---) |
[152, 426, 45217] |
C2 x C42 |
104) |
[51893, 1042, 63869] |
C7 x C84 |
|
---) |
[221, 521, 51893] |
C2 x C84 |
105) |
[57289, 970, 6069] |
C7 x C84 |
|
---) |
[21, 485, 57289] |
C2 x C42 |
106) |
[60361, 247, 162] |
C7 x C84 |
|
---) |
[8, 494, 60361] |
C2 x C42 |
107) |
[64508, 656, 43076] |
C7 x C84 |
|
---) |
[89, 328, 16127] |
C84 |
108) |
[69517, 700, 52983] |
C7 x C84 |
|
---) |
[28, 1400, 278068] |
C2 x C42 |
109) |
[76217, 277, 128] |
C7 x C84 |
|
---) |
[8, 554, 76217] |
C2 x C42 |
110) |
[89329, 299, 18] |
C7 x C84 |
|
---) |
[8, 598, 89329] |
C84 |
111) |
[95896, 1244, 3300] |
C7 x C84 |
|
---) |
[33, 622, 95896] |
C2 x C42 |
112) |
[112604, 706, 12005] |
C7 x C84 |
|
---) |
[5, 353, 28151] |
C84 |
113) |
[122753, 2459, 744464] |
C7 x C84 |
|
---) |
[161, 4019, 1964048] |
C84 |
114) |
[125564, 766, 21125] |
C7 x C84 |
|
---) |
[5, 383, 31391] |
C84 |
115) |
[127837, 361, 621] |
C7 x C84 |
|
---) |
[69, 722, 127837] |
C84 |
116) |
[131201, 383, 3872] |
C7 x C84 |
|
---) |
[8, 766, 131201] |
C84 |
117) |
[134773, 820, 33327] |
C7 x C84 |
|
---) |
[28, 1640, 539092] |
C2 x C42 |
118) |
[137809, 1562, 58725] |
C7 x C84 |
|
---) |
[29, 781, 137809] |
C84 |
■ |
119) |
[144649, 381, 128] |
C7 x C84 |
|
---) |
[8, 762, 144649] |
C2 x C42 |
120) |
[154844, 1376, 318500] |
C7 x C84 |
|
---) |
[65, 688, 38711] |
C2 x C84 |
121) |
[154897, 2131, 167184] |
C7 x C84 |
|
---) |
[129, 4262, 3872425] |
C84 |
122) |
[154897, 507, 25538] |
C7 x C84 |
|
---) |
[8, 1014, 154897] |
C84 |
123) |
[160057, 403, 588] |
C7 x C84 |
|
---) |
[12, 806, 160057] |
C2 x C42 |
124) |
[172789, 1133, 277725] |
C7 x C84 |
|
---) |
[21, 1909, 172789] |
C2 x C42 |
■ |
125) |
[172789, 1690, 22869] |
C7 x C84 |
|
---) |
[21, 845, 172789] |
C2 x C42 |
126) |
[175964, 856, 7220] |
C7 x C84 |
|
---) |
[5, 428, 43991] |
C84 |
127) |
[179489, 431, 1568] |
C7 x C84 |
|
---) |
[8, 862, 179489] |
C84 |
■ |
128) |
[234524, 992, 11492] |
C7 x C84 |
|
---) |
[17, 496, 58631] |
C84 |
129) |
[294433, 2099, 438976] |
C7 x C84 |
|
---) |
[76, 4198, 2649897] |
C2 x C42 |
130) |
[295985, 583, 10976] |
C7 x C84 |
|
---) |
[56, 1166, 295985] |
C7 x C42 |
131) |
[330037, 581, 1881] |
C7 x C84 |
|
9) |
[209, 1162, 330037] |
C7 x C84 |
132) |
[349229, 2413, 669877] |
C7 x C84 |
|
---) |
[13, 1221, 349229] |
C84 |
133) |
[443953, 2283, 304128] |
C7 x C84 |
|
---) |
[33, 3215, 1775812] |
C84 |
134) |
[492124, 1472, 49572] |
C7 x C84 |
|
---) |
[17, 736, 123031] |
C84 |
135) |
[524689, 983, 110400] |
C7 x C84 |
|
---) |
[69, 1966, 524689] |
C14 x C42 |
136) |
[553489, 887, 58320] |
C7 x C84 |
|
---) |
[5, 1581, 553489] |
C84 |
137) |
[623401, 805, 6156] |
C7 x C84 |
|
---) |
[76, 1610, 623401] |
C84 |
138) |
[727721, 1555, 422576] |
C7 x C84 |
|
---) |
[44, 3110, 727721] |
C2 x C42 |
139) |
[744577, 2595, 8208] |
C7 x C84 |
|
---) |
[57, 5190, 6701193] |
C2 x C42 |
140) |
[820513, 1007, 48384] |
C7 x C84 |
|
---) |
[21, 2014, 820513] |
C14 x C42 |
141) |
[884497, 943, 1188] |
C7 x C84 |
|
---) |
[33, 1886, 884497] |
C84 |
142) |
[982441, 1171, 97200] |
C7 x C84 |
|
---) |
[12, 2342, 982441] |
C2 x C42 |
143) |
[1016373, 1037, 14749] |
C7 x C84 |
|
---) |
[301, 2074, 1016373] |
C14 x C42 |
144) |
[1377401, 1547, 253952] |
C7 x C84 |
|
---) |
[248, 3094, 1377401] |
C14 x C42 |
145) |
[1442449, 1509, 208658] |
C7 x C84 |
|
2) |
[8, 3018, 1442449] |
C7 x C84 |
146) |
[1457629, 2553, 1265045] |
C7 x C84 |
|
---) |
[5, 2629, 1457629] |
C84 |
147) |
[1491977, 1227, 3388] |
C7 x C84 |
|
5) |
[28, 2454, 1491977] |
C7 x C84 |
148) |
[1717309, 1977, 547805] |
C7 x C84 |
|
---) |
[5, 2621, 1717309] |
C84 |
149) |
[1941029, 1397, 2645] |
C7 x C84 |
|
---) |
[5, 2794, 1941029] |
C84 |
150) |
[2657681, 2135, 475136] |
C7 x C84 |
|
---) |
[29, 4270, 2657681] |
C7 x C42 |
151) |
[4706153, 2707, 655424] |
C7 x C84 |
|
10) |
[209, 5414, 4706153] |
C7 x C84 |
152) |
[15853033, 4051, 139392] |
C7 x C84 |
|
3) |
[8, 8102, 15853033] |
C7 x C84 |