Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C765 non-normal (D4) quartic CM field invariants: 323 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 10078, 23823521] C765 ---) [23823521, 5039, 392000] C5355
2) [5, 7078, 11591401] C765 310) [11591401, 3539, 233280] C765
3) [5, 8998, 19441001] C765 ---) [19441001, 4499, 200000] C3 x C765
4) [5, 10958, 29998961] C765 319) [29998961, 5479, 5120] C765
5) [5, 11054, 30155729] C765 320) [30155729, 5527, 98000] C765
6) [5, 10174, 24944449] C765 317) [24944449, 5087, 233280] C765
7) [5, 6033, 8176921] C765 ---) [8176921, 3451, 933120] C5 x C765
8) [5, 8966, 19449289] C765 315) [19449289, 4483, 162000] C765
9) [5, 9062, 20043241] C765 ---) [20043241, 4531, 121680] C17 x C23715
10) [5, 9238, 21093161] C765 ---) [21093161, 4619, 60500] C3 x C765
11) [8, 4606, 4379009] C765 287) [4379009, 2303, 231200] C765
12) [8, 8894, 19675457] C765 316) [19675457, 4447, 25088] C765
13) [8, 12646, 39814441] C765 ---) [39814441, 6323, 41472] C3 x C765
14) [8, 11654, 33728137] C765 323) [33728137, 5827, 56448] C765
15) [8, 7934, 12460289] C765 311) [12460289, 3967, 819200] C765
16) [8, 5950, 8850113] C765 ---) [8850113, 2975, 128] C5355
17) [8, 7502, 13145201] C765 312) [13145201, 3751, 231200] C765
18) [8, 7598, 11155601] C765 ---) [11155601, 3799, 819200] C237915
19) [8, 6862, 10387313] C765 ---) [10387313, 3431, 346112] C15 x C765
20) [8, 3982, 3503281] C765 281) [3503281, 1991, 115200] C765
21) [8, 4862, 5189761] C765 ---) [5189761, 2431, 180000] C3 x C765
22) [8, 5230, 6836177] C765 296) [6836177, 2615, 512] C765
23) [8, 5662, 7973089] C765 301) [7973089, 2831, 10368] C765
24) [8, 6158, 9429041] C765 306) [9429041, 3079, 12800] C765
25) [8, 6014, 8695937] C765 303) [8695937, 3007, 86528] C765
26) [8, 7166, 11344897] C765 ---) [11344897, 3583, 373248] C3 x C765
27) [8, 5438, 7312961] C765 ---) [7312961, 2719, 20000] C3 x C765
28) [8, 4750, 4460977] C765 ---) [4460977, 2375, 294912] C31365
29) [8, 7918, 14613713] C765 313) [14613713, 3959, 264992] C765
30) [13, 9837, 24172373] C765 ---) [24172373, 17465, 21868717] C3 x C765
31) [13, 6726, 9699017] C765 307) [9699017, 3363, 402688] C765
32) [13, 5094, 6404009] C765 295) [6404009, 2547, 20800] C765
33) [13, 5158, 2338153] C765 276) [2338153, 2579, 1078272] C765
34) [13, 6798, 8303201] C765 ---) [8303201, 3399, 812500] C5 x C765
35) [13, 11582, 33348481] C765 322) [33348481, 5791, 46800] C765
36) [13, 5646, 7886129] C765 299) [7886129, 2823, 20800] C765
37) [13, 5526, 7301369] C765 298) [7301369, 2763, 83200] C765
38) [13, 6198, 5527001] C765 290) [5527001, 3099, 1019200] C765
39) [13, 10934, 28809817] C765 318) [28809817, 5467, 269568] C765
40) [13, 5766, 8098697] C765 302) [8098697, 2883, 53248] C765
41) [13, 7638, 10737593] C765 309) [10737593, 3819, 961792] C765
42) [17, 2302, 1255169] C765 ---) [1255169, 1151, 17408] C3 x C765
43) [17, 3278, 1428593] C765 ---) [1428593, 1639, 314432] C9 x C765
44) [29, 4174, 4325873] C765 ---) [4325873, 2087, 7424] C9945
45) [29, 5342, 7126817] C765 297) [7126817, 2671, 1856] C765
46) [29, 5078, 5548217] C765 291) [5548217, 2539, 224576] C765
47) [29, 5590, 5911481] C765 ---) [5911481, 2795, 475136] C3 x C765
48) [37, 4230, 4073033] C765 286) [4073033, 2115, 100048] C765
49) [37, 4470, 4985753] C765 ---) [4985753, 2235, 2368] C8415
50) [37, 3558, 2018729] C765 ---) [2018729, 1779, 286528] C5355
51) [37, 2982, 2213609] C765 275) [2213609, 1491, 2368] C765
52) [37, 3678, 3230369] C765 ---) [3230369, 1839, 37888] C3 x C765
53) [37, 3609, 3244889] C765 279) [3244889, 7218, 45325] C765
54) [37, 4278, 3095321] C765 277) [3095321, 2139, 370000] C765
55) [41, 2482, 1503181] C765 ---) [1503181, 1241, 9225] C3 x C765
56) [41, 2686, 415553] C765 255) [415553, 1343, 347024] C765
57) [53, 2630, 1240777] C765 268) [1240777, 1315, 122112] C765
58) [53, 7174, 12812297] C765 ---) [12812297, 3587, 13568] C3 x C765
59) [53, 3094, 2176121] C765 274) [2176121, 1547, 54272] C765
60) [61, 5126, 5304073] C765 289) [5304073, 2563, 316224] C765
61) [61, 6662, 3189961] C765 278) [3189961, 3331, 1976400] C765
62) [61, 5526, 6072569] C765 293) [6072569, 2763, 390400] C765
63) [73, 8406, 17198009] C765 314) [17198009, 4203, 116800] C765
64) [89, 7142, 9192041] C765 305) [9192041, 3571, 890000] C765
65) [89, 2146, 1108253] C765 266) [1108253, 1073, 10769] C765
66) [97, 2202, 1202501] C765 267) [1202501, 1101, 2425] C765
67) [97, 1550, 377137] C765 253) [377137, 775, 55872] C765
68) [101, 3694, 3249809] C765 280) [3249809, 1847, 40400] C765
69) [109, 4406, 1776793] C765 272) [1776793, 2203, 769104] C765
70) [109, 2358, 1388297] C765 269) [1388297, 1179, 436] C765
71) [113, 1647, 660496] C765 227) [41281, 1511, 65088] C765
72) [113, 11366, 32267561] C765 321) [32267561, 5683, 7232] C765
73) [137, 4774, 4435177] C765 288) [4435177, 2387, 315648] C765
74) [157, 4013, 4025689] C765 285) [4025689, 8026, 1413] C765
75) [181, 7414, 12583449] C765 270) [1398161, 3707, 289600] C765
76) [181, 2406, 1096793] C765 265) [1096793, 1203, 87604] C765
77) [193, 5286, 6194921] C765 294) [6194921, 2643, 197632] C765
78) [197, 3094, 867641] C765 263) [867641, 1547, 381392] C765
79) [233, 6758, 8897513] C765 304) [8897513, 3379, 630032] C765
80) [233, 3006, 2020417] C765 226) [41233, 1503, 59648] C765
81) [269, 6358, 10088825] C765 ---) [403553, 3179, 4304] C8415
82) [353, 1274, 404357] C765 254) [404357, 637, 353] C765
83) [401, 315, 12676] C765 ---) [3169, 630, 48521] C153
84) [401, 162, 4957] C765 ---) [4957, 81, 401] C153
85) [401, 1270, 377561] C765 ---) [377561, 635, 6416] C153
86) [409, 1146, 326693] C765 251) [326693, 573, 409] C765
87) [409, 5702, 7892617] C765 300) [7892617, 2851, 58896] C765
88) [409, 4950, 6020921] C765 ---) [6020921, 2475, 26176] C100215
89) [457, 1407, 283664] C765 215) [17729, 2814, 844993] C765
90) [457, 738, 134333] C765 237) [134333, 369, 457] C765
91) [557, 1078, 254873] C765 244) [254873, 539, 8912] C765
92) [593, 2998, 1905433] C765 273) [1905433, 1499, 85392] C765
93) [593, 1322, 320693] C765 248) [320693, 661, 29057] C765
94) [593, 5878, 2223833] C765 ---) [2223833, 2939, 1603472] C3 x C765
95) [601, 3366, 947753] C765 264) [947753, 1683, 471184] C765
96) [641, 1754, 643493] C765 260) [643493, 877, 31409] C765
97) [653, 1498, 495701] C765 257) [495701, 749, 16325] C765
98) [673, 6422, 9922873] C765 308) [9922873, 3211, 96912] C765
99) [677, 1025, 188017] C765 240) [188017, 2050, 298557] C765
100) [709, 1225, 245941] C765 243) [245941, 2450, 516861] C765
101) [769, 651, 36548] C765 187) [9137, 1302, 277609] C765
102) [773, 1413, 443293] C765 256) [443293, 2826, 223397] C765
103) [773, 1382, 279593] C765 ---) [279593, 691, 49472] C3 x C765
104) [881, 2894, 2079713] C765 ---) [2079713, 1447, 3524] C17595
105) [929, 1258, 213557] C765 ---) [213557, 629, 45521] C3 x C765
106) [937, 1970, 666637] C765 261) [666637, 985, 75897] C765
107) [941, 1249, 322013] C765 250) [322013, 2498, 271949] C765
108) [1033, 1302, 10601] C765 191) [10601, 651, 103300] C765
109) [1049, 1423, 503872] C765 ---) [7873, 2846, 9441] C9 x C765
110) [1069, 1073, 146457] C765 211) [16273, 2146, 565501] C765
111) [1117, 3857, 153369] C765 213) [17041, 2627, 1005300] C765
112) [1193, 2222, 12689] C765 197) [12689, 1111, 305408] C765
113) [1289, 2087, 1080836] C765 246) [270209, 4174, 32225] C765
114) [1429, 1854, 767873] C765 ---) [2657, 927, 22864] C153
115) [1429, 537, 11717] C765 ---) [11717, 1074, 241501] C153
116) [1493, 1274, 256469] C765 245) [256469, 637, 37325] C765
117) [1693, 1778, 729373] C765 262) [729373, 889, 15237] C765
118) [1753, 1163, 106308] C765 143) [2953, 2326, 927337] C765
119) [1801, 1574, 360025] C765 ---) [14401, 787, 64836] C32895
120) [1861, 1358, 193057] C765 242) [193057, 679, 66996] C765
121) [2053, 2942, 61569] C765 178) [6841, 1471, 525568] C765
122) [2081, 1383, 477652] C765 ---) [2437, 1913, 168561] C153
123) [2081, 851, 118100] C765 ---) [1181, 1481, 52025] C153
124) [2153, 403, 14228] C765 ---) [3557, 806, 105497] C153
125) [2153, 542, 38993] C765 ---) [38993, 271, 8612] C3 x C153
126) [2269, 2885, 106209] C765 193) [11801, 4911, 5672500] C765
127) [2293, 3469, 2136577] C765 182) [7393, 2791, 1797712] C765
128) [2297, 259, 16196] C765 155) [4049, 518, 2297] C765
129) [2309, 950, 188681] C765 241) [188681, 475, 9236] C765
130) [2333, 753, 113173] C765 233) [113173, 1506, 114317] C765
131) [2473, 1391, 260532] C765 181) [7237, 2782, 892753] C765
132) [2473, 3859, 2782612] C765 ---) [14197, 4549, 1308217] C3 x C765
133) [2657, 1515, 15172] C765 152) [3793, 3030, 2234537] C765
134) [2693, 794, 146837] C765 238) [146837, 397, 2693] C765
135) [2789, 6289, 343225] C765 203) [13729, 3795, 713984] C765
136) [2801, 5579, 7192400] C765 219) [17981, 4985, 3834569] C765
137) [2801, 543, 73012] C765 ---) [18253, 1086, 2801] C5 x C765
138) [2801, 3579, 3184804] C765 210) [16249, 7158, 70025] C765
139) [2801, 4806, 351673] C765 179) [7177, 2403, 1355684] C765
140) [2833, 1042, 260109] C765 ---) [28901, 521, 2833] C9 x C765
141) [2909, 3921, 3842833] C765 202) [13297, 5111, 942516] C765
142) [2953, 1387, 267588] C765 183) [7433, 2774, 853417] C765
143) [2953, 2326, 927337] C765 118) [1753, 1163, 106308] C765
144) [3109, 393, 19181] C765 222) [19181, 786, 77725] C765
145) [3121, 918, 10937] C765 ---) [10937, 459, 49936] C153
146) [3329, 735, 134224] C765 186) [8389, 1470, 3329] C765
147) [3361, 378, 22277] C765 223) [22277, 189, 3361] C765
148) [3457, 3962, 3578661] C765 168) [4909, 1981, 86425] C765
149) [3461, 1446, 301225] C765 194) [12049, 723, 55376] C765
150) [3541, 6101, 1316169] C765 209) [16249, 5039, 6246324] C765
151) [3617, 755, 33092] C765 185) [8273, 1510, 437657] C765
152) [3793, 3030, 2234537] C765 133) [2657, 1515, 15172] C765
153) [3881, 2291, 255568] C765 208) [15973, 4582, 4226409] C765
154) [3989, 5157, 424825] C765 212) [16993, 8267, 2297664] C765
155) [4049, 518, 2297] C765 128) [2297, 259, 16196] C765
156) [4133, 746, 122597] C765 235) [122597, 373, 4133] C765
157) [4273, 8319, 71636] C765 217) [17909, 8289, 517033] C765
158) [4297, 995, 194868] C765 170) [5413, 1990, 210553] C765
159) [4337, 1087, 207568] C765 198) [12973, 2174, 351297] C765
160) [4357, 729, 1061] C765 ---) [1061, 1458, 527197] C153
161) [4373, 7437, 5167609] C765 216) [17881, 8831, 3935700] C765
162) [4373, 746, 121637] C765 234) [121637, 373, 4373] C765
163) [4441, 3523, 2408976] C765 ---) [16729, 7046, 2775625] C153
164) [4621, 301, 12253] C765 195) [12253, 602, 41589] C765
165) [4789, 4689, 122225] C765 ---) [4889, 4219, 478900] C5 x C765
166) [4813, 3262, 1967089] C765 171) [5449, 1631, 173268] C765
167) [4889, 4299, 1920400] C765 ---) [4801, 3475, 2816064] C153
168) [4909, 1981, 86425] C765 148) [3457, 3962, 3578661] C765
169) [5413, 4213, 1188189] C765 204) [14669, 8426, 12996613] C765
170) [5413, 1990, 210553] C765 158) [4297, 995, 194868] C765
171) [5449, 1631, 173268] C765 166) [4813, 3262, 1967089] C765
172) [5521, 623, 95652] C765 ---) [2657, 1246, 5521] C85
173) [5693, 7873, 12078809] C765 196) [12569, 4603, 2277200] C765
174) [5701, 869, 118953] C765 199) [13217, 1738, 279349] C765
175) [5717, 9561, 6489697] C765 218) [17977, 7447, 10084788] C765
176) [5881, 8994, 439325] C765 214) [17573, 4497, 4945921] C765
177) [5953, 627, 61076] C765 206) [15269, 1254, 148825] C765
178) [6841, 1471, 525568] C765 121) [2053, 2942, 61569] C765
179) [7177, 2403, 1355684] C765 139) [2801, 4806, 351673] C765
180) [7229, 941, 2693] C765 ---) [2693, 1882, 874709] C153
181) [7237, 2782, 892753] C765 131) [2473, 1391, 260532] C765
182) [7393, 2791, 1797712] C765 127) [2293, 3469, 2136577] C765
183) [7433, 2774, 853417] C765 142) [2953, 1387, 267588] C765
184) [7817, 1934, 810017] C765 ---) [4793, 967, 31268] C153
185) [8273, 1510, 437657] C765 151) [3617, 755, 33092] C765
186) [8389, 1470, 3329] C765 146) [3329, 735, 134224] C765
187) [9137, 1302, 277609] C765 101) [769, 651, 36548] C765
188) [9829, 1058, 240525] C765 ---) [1069, 529, 9829] C153
189) [10273, 1322, 67093] C765 ---) [397, 661, 92457] C85
190) [10273, 3671, 2791204] C765 ---) [4129, 6023, 4972132] C85
191) [10601, 651, 103300] C765 108) [1033, 1302, 10601] C765
192) [11273, 1135, 296692] C765 ---) [613, 2270, 101457] C153
193) [11801, 4911, 5672500] C765 126) [2269, 2885, 106209] C765
194) [12049, 723, 55376] C765 149) [3461, 1446, 301225] C765
195) [12253, 602, 41589] C765 164) [4621, 301, 12253] C765
196) [12569, 4603, 2277200] C765 173) [5693, 7873, 12078809] C765
197) [12689, 1111, 305408] C765 112) [1193, 2222, 12689] C765
198) [12973, 2174, 351297] C765 159) [4337, 1087, 207568] C765
199) [13217, 1738, 279349] C765 174) [5701, 869, 118953] C765
200) [13229, 129, 853] C765 ---) [853, 258, 13229] C153
201) [13229, 1629, 263233] C765 ---) [313, 1371, 52916] C153
202) [13297, 5111, 942516] C765 141) [2909, 3921, 3842833] C765
203) [13729, 3795, 713984] C765 135) [2789, 6289, 343225] C765
204) [14669, 8426, 12996613] C765 169) [5413, 4213, 1188189] C765
205) [15121, 371, 388] C765 ---) [97, 742, 136089] C153
206) [15269, 1254, 148825] C765 177) [5953, 627, 61076] C765
207) [15473, 5079, 4402756] C765 ---) [3049, 5971, 8912448] C153
208) [15973, 4582, 4226409] C765 153) [3881, 2291, 255568] C765
209) [16249, 5039, 6246324] C765 150) [3541, 6101, 1316169] C765
210) [16249, 7158, 70025] C765 138) [2801, 3579, 3184804] C765
211) [16273, 2146, 565501] C765 110) [1069, 1073, 146457] C765
212) [16993, 8267, 2297664] C765 154) [3989, 5157, 424825] C765
213) [17041, 2627, 1005300] C765 111) [1117, 3857, 153369] C765
214) [17573, 4497, 4945921] C765 176) [5881, 8994, 439325] C765
215) [17729, 2814, 844993] C765 89) [457, 1407, 283664] C765
216) [17881, 8831, 3935700] C765 161) [4373, 7437, 5167609] C765
217) [17909, 8289, 517033] C765 157) [4273, 8319, 71636] C765
218) [17977, 7447, 10084788] C765 175) [5717, 9561, 6489697] C765
219) [17981, 4985, 3834569] C765 136) [2801, 5579, 7192400] C765
220) [17989, 1082, 220725] C765 ---) [109, 541, 17989] C85
221) [18253, 2373, 855629] C765 ---) [509, 1961, 456325] C153
222) [19181, 786, 77725] C765 144) [3109, 393, 19181] C765
223) [22277, 189, 3361] C765 147) [3361, 378, 22277] C765
224) [24781, 730, 34101] C765 ---) [421, 365, 24781] C85
225) [27893, 173, 509] C765 ---) [509, 346, 27893] C153
226) [41233, 1503, 59648] C765 80) [233, 3006, 2020417] C765
227) [41281, 1511, 65088] C765 71) [113, 1647, 660496] C765
228) [45533, 2389, 49457] C765 ---) [137, 1535, 182132] C153
229) [46337, 1123, 211024] C765 ---) [109, 2246, 417033] C153
230) [49081, 1242, 189317] C765 ---) [197, 621, 49081] C153
231) [58657, 1459, 400192] C765 ---) [37, 985, 58657] C153
232) [77521, 495, 41876] C765 ---) [29, 990, 77521] C85
233) [113173, 1506, 114317] C765 130) [2333, 753, 113173] C765
234) [121637, 373, 4373] C765 162) [4373, 746, 121637] C765
235) [122597, 373, 4133] C765 156) [4133, 746, 122597] C765
236) [126097, 357, 338] C765 ---) [8, 714, 126097] C85
237) [134333, 369, 457] C765 90) [457, 738, 134333] C765
238) [146837, 397, 2693] C765 134) [2693, 794, 146837] C765
239) [185821, 473, 9477] C765 ---) [13, 946, 185821] C153
240) [188017, 2050, 298557] C765 99) [677, 1025, 188017] C765
241) [188681, 475, 9236] C765 129) [2309, 950, 188681] C765
242) [193057, 679, 66996] C765 120) [1861, 1358, 193057] C765
243) [245941, 2450, 516861] C765 100) [709, 1225, 245941] C765
244) [254873, 539, 8912] C765 91) [557, 1078, 254873] C765
245) [256469, 637, 37325] C765 116) [1493, 1274, 256469] C765
246) [270209, 4174, 32225] C765 113) [1289, 2087, 1080836] C765
247) [277601, 527, 32] C765 ---) [8, 1054, 277601] C153
248) [320693, 661, 29057] C765 93) [593, 1322, 320693] C765
249) [321193, 1703, 2368] C765 ---) [37, 3406, 2890737] C153
250) [322013, 2498, 271949] C765 107) [941, 1249, 322013] C765
251) [326693, 573, 409] C765 86) [409, 1146, 326693] C765
252) [338669, 913, 123725] C765 ---) [101, 1826, 338669] C153
253) [377137, 775, 55872] C765 67) [97, 1550, 377137] C765
254) [404357, 637, 353] C765 82) [353, 1274, 404357] C765
255) [415553, 1343, 347024] C765 56) [41, 2686, 415553] C765
256) [443293, 2826, 223397] C765 102) [773, 1413, 443293] C765
257) [495701, 749, 16325] C765 97) [653, 1498, 495701] C765
258) [531173, 757, 10469] C765 ---) [29, 1514, 531173] C153
259) [533453, 2946, 35917] C765 ---) [733, 1473, 533453] C3 x C765
260) [643493, 877, 31409] C765 96) [641, 1754, 643493] C765
261) [666637, 985, 75897] C765 106) [937, 1970, 666637] C765
262) [729373, 889, 15237] C765 117) [1693, 1778, 729373] C765
263) [867641, 1547, 381392] C765 78) [197, 3094, 867641] C765
264) [947753, 1683, 471184] C765 95) [601, 3366, 947753] C765
265) [1096793, 1203, 87604] C765 76) [181, 2406, 1096793] C765
266) [1108253, 1073, 10769] C765 65) [89, 2146, 1108253] C765
267) [1202501, 1101, 2425] C765 66) [97, 2202, 1202501] C765
268) [1240777, 1315, 122112] C765 57) [53, 2630, 1240777] C765
269) [1388297, 1179, 436] C765 70) [109, 2358, 1388297] C765
270) [1398161, 3707, 289600] C765 75) [181, 7414, 12583449] C765
271) [1704793, 1339, 22032] C765 ---) [17, 2678, 1704793] C153
272) [1776793, 2203, 769104] C765 69) [109, 4406, 1776793] C765
273) [1905433, 1499, 85392] C765 92) [593, 2998, 1905433] C765
274) [2176121, 1547, 54272] C765 59) [53, 3094, 2176121] C765
275) [2213609, 1491, 2368] C765 51) [37, 2982, 2213609] C765
276) [2338153, 2579, 1078272] C765 33) [13, 5158, 2338153] C765
277) [3095321, 2139, 370000] C765 54) [37, 4278, 3095321] C765
278) [3189961, 3331, 1976400] C765 61) [61, 6662, 3189961] C765
279) [3244889, 7218, 45325] C765 53) [37, 3609, 3244889] C765
280) [3249809, 1847, 40400] C765 68) [101, 3694, 3249809] C765
281) [3503281, 1991, 115200] C765 20) [8, 3982, 3503281] C765
282) [3713753, 2075, 147968] C765 ---) [8, 4150, 3713753] C153
283) [3848969, 2563, 680000] C765 ---) [17, 5126, 3848969] C153
284) [3875869, 2793, 981245] C765 ---) [5, 3949, 3875869] C153
285) [4025689, 8026, 1413] C765 74) [157, 4013, 4025689] C765
286) [4073033, 2115, 100048] C765 48) [37, 4230, 4073033] C765
287) [4379009, 2303, 231200] C765 11) [8, 4606, 4379009] C765
288) [4435177, 2387, 315648] C765 73) [137, 4774, 4435177] C765
289) [5304073, 2563, 316224] C765 60) [61, 5126, 5304073] C765
290) [5527001, 3099, 1019200] C765 38) [13, 6198, 5527001] C765
291) [5548217, 2539, 224576] C765 46) [29, 5078, 5548217] C765
292) [6035353, 2875, 557568] C765 ---) [8, 5750, 6035353] C153
293) [6072569, 2763, 390400] C765 62) [61, 5526, 6072569] C765
294) [6194921, 2643, 197632] C765 77) [193, 5286, 6194921] C765
295) [6404009, 2547, 20800] C765 32) [13, 5094, 6404009] C765
296) [6836177, 2615, 512] C765 22) [8, 5230, 6836177] C765
297) [7126817, 2671, 1856] C765 45) [29, 5342, 7126817] C765
298) [7301369, 2763, 83200] C765 37) [13, 5526, 7301369] C765
299) [7886129, 2823, 20800] C765 36) [13, 5646, 7886129] C765
300) [7892617, 2851, 58896] C765 87) [409, 5702, 7892617] C765
301) [7973089, 2831, 10368] C765 23) [8, 5662, 7973089] C765
302) [8098697, 2883, 53248] C765 40) [13, 5766, 8098697] C765
303) [8695937, 3007, 86528] C765 25) [8, 6014, 8695937] C765
304) [8897513, 3379, 630032] C765 79) [233, 6758, 8897513] C765
305) [9192041, 3571, 890000] C765 64) [89, 7142, 9192041] C765
306) [9429041, 3079, 12800] C765 24) [8, 6158, 9429041] C765
307) [9699017, 3363, 402688] C765 31) [13, 6726, 9699017] C765
308) [9922873, 3211, 96912] C765 98) [673, 6422, 9922873] C765
309) [10737593, 3819, 961792] C765 41) [13, 7638, 10737593] C765
310) [11591401, 3539, 233280] C765 2) [5, 7078, 11591401] C765
311) [12460289, 3967, 819200] C765 15) [8, 7934, 12460289] C765
312) [13145201, 3751, 231200] C765 17) [8, 7502, 13145201] C765
313) [14613713, 3959, 264992] C765 29) [8, 7918, 14613713] C765
314) [17198009, 4203, 116800] C765 63) [73, 8406, 17198009] C765
315) [19449289, 4483, 162000] C765 8) [5, 8966, 19449289] C765
316) [19675457, 4447, 25088] C765 12) [8, 8894, 19675457] C765
317) [24944449, 5087, 233280] C765 6) [5, 10174, 24944449] C765
318) [28809817, 5467, 269568] C765 39) [13, 10934, 28809817] C765
319) [29998961, 5479, 5120] C765 4) [5, 10958, 29998961] C765
320) [30155729, 5527, 98000] C765 5) [5, 11054, 30155729] C765
321) [32267561, 5683, 7232] C765 72) [113, 11366, 32267561] C765
322) [33348481, 5791, 46800] C765 35) [13, 11582, 33348481] C765
323) [33728137, 5827, 56448] C765 14) [8, 11654, 33728137] C765