Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C793 non-normal (D4) quartic CM field invariants: 77 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [17, 2750, 1315073] C793 ---) [1315073, 1375, 143888] C2379
2) [61, 3774, 3170369] C793 76) [3170369, 1887, 97600] C793
3) [97, 3278, 674929] C793 ---) [674929, 1639, 502848] C5551
4) [109, 5390, 7200241] C793 77) [7200241, 2695, 15696] C793
5) [181, 2958, 785777] C793 75) [785777, 1479, 350416] C793
6) [281, 2054, 834425] C793 67) [33377, 1027, 55076] C793
7) [337, 1102, 282033] C793 66) [31337, 551, 5392] C793
8) [1013, 1118, 296273] C793 72) [296273, 559, 4052] C793
9) [1789, 1814, 794025] C793 23) [3529, 907, 7156] C793
10) [1801, 3043, 1630132] C793 46) [8317, 2533, 88249] C793
11) [1997, 829, 167317] C793 69) [167317, 1658, 17973] C793
12) [2269, 357, 17681] C793 65) [17681, 714, 56725] C793
13) [2293, 2449, 8377] C793 47) [8377, 4399, 3311092] C793
14) [2393, 4070, 3796633] C793 44) [7177, 2035, 86148] C793
15) [2473, 1171, 312516] C793 48) [8681, 2342, 121177] C793
16) [2609, 539, 56324] C793 56) [14081, 1078, 65225] C793
17) [2617, 2419, 467776] C793 45) [7309, 4081, 1384393] C793
18) [2909, 2510, 1156129] C793 43) [6841, 1255, 104724] C793
19) [3089, 803, 30692] C793 ---) [7673, 1606, 522041] C2379
20) [3209, 3403, 968900] C793 51) [9689, 4571, 3709604] C793
21) [3217, 6107, 8647488] C793 57) [15013, 4045, 3217] C793
22) [3301, 5474, 2724525] C793 52) [12109, 2737, 1191661] C793
23) [3529, 907, 7156] C793 9) [1789, 1814, 794025] C793
24) [3929, 518, 4217] C793 27) [4217, 259, 15716] C793
25) [4057, 3391, 2703312] C793 ---) [18773, 6782, 685633] C3965
26) [4073, 6027, 8102644] C793 ---) [16741, 5681, 329913] C3965
27) [4217, 259, 15716] C793 24) [3929, 518, 4217] C793
28) [4421, 8698, 14934901] C793 58) [15541, 4349, 994725] C793
29) [4457, 3663, 224464] C793 55) [14029, 7326, 12519713] C793
30) [4673, 6899, 6337012] C793 54) [13093, 5805, 565433] C793
31) [4969, 8523, 17503232] C793 62) [17093, 6021, 6802561] C793
32) [4969, 7962, 8673125] C793 ---) [13877, 3981, 1793809] C2379
33) [5077, 5781, 433601] C793 49) [8849, 4079, 3980368] C793
34) [5077, 677, 52389] C793 ---) [5821, 1354, 248773] C2379
35) [5189, 1458, 12541] C793 53) [12541, 729, 129725] C793
36) [5197, 4721, 82629] C793 ---) [9181, 6413, 2291877] C3965
37) [5413, 4566, 5125481] C793 50) [9689, 2283, 21652] C793
38) [5437, 453, 17321] C793 64) [17321, 906, 135925] C793
39) [5441, 571, 69268] C793 63) [17317, 1142, 48969] C793
40) [5641, 8587, 15318900] C793 61) [17021, 5713, 3525625] C793
41) [5749, 9205, 140229] C793 59) [15581, 6369, 3593125] C793
42) [5881, 7706, 143109] C793 60) [15901, 3853, 3675625] C793
43) [6841, 1255, 104724] C793 18) [2909, 2510, 1156129] C793
44) [7177, 2035, 86148] C793 14) [2393, 4070, 3796633] C793
45) [7309, 4081, 1384393] C793 17) [2617, 2419, 467776] C793
46) [8317, 2533, 88249] C793 10) [1801, 3043, 1630132] C793
47) [8377, 4399, 3311092] C793 13) [2293, 2449, 8377] C793
48) [8681, 2342, 121177] C793 15) [2473, 1171, 312516] C793
49) [8849, 4079, 3980368] C793 33) [5077, 5781, 433601] C793
50) [9689, 2283, 21652] C793 37) [5413, 4566, 5125481] C793
51) [9689, 4571, 3709604] C793 20) [3209, 3403, 968900] C793
52) [12109, 2737, 1191661] C793 22) [3301, 5474, 2724525] C793
53) [12541, 729, 129725] C793 35) [5189, 1458, 12541] C793
54) [13093, 5805, 565433] C793 30) [4673, 6899, 6337012] C793
55) [14029, 7326, 12519713] C793 29) [4457, 3663, 224464] C793
56) [14081, 1078, 65225] C793 16) [2609, 539, 56324] C793
57) [15013, 4045, 3217] C793 21) [3217, 6107, 8647488] C793
58) [15541, 4349, 994725] C793 28) [4421, 8698, 14934901] C793
59) [15581, 6369, 3593125] C793 41) [5749, 9205, 140229] C793
60) [15901, 3853, 3675625] C793 42) [5881, 7706, 143109] C793
61) [17021, 5713, 3525625] C793 40) [5641, 8587, 15318900] C793
62) [17093, 6021, 6802561] C793 31) [4969, 8523, 17503232] C793
63) [17317, 1142, 48969] C793 39) [5441, 571, 69268] C793
64) [17321, 906, 135925] C793 38) [5437, 453, 17321] C793
65) [17681, 714, 56725] C793 12) [2269, 357, 17681] C793
66) [31337, 551, 5392] C793 7) [337, 1102, 282033] C793
67) [33377, 1027, 55076] C793 6) [281, 2054, 834425] C793
68) [87833, 307, 1604] C793 ---) [401, 614, 87833] C3965
69) [167317, 1658, 17973] C793 11) [1997, 829, 167317] C793
70) [185401, 4355, 987136] C793 ---) [241, 6071, 741604] C61
71) [272549, 2122, 35525] C793 ---) [29, 1061, 272549] C61
72) [296273, 559, 4052] C793 8) [1013, 1118, 296273] C793
73) [752861, 3474, 5725] C793 ---) [229, 1737, 752861] C2379
74) [776057, 1153, 138338] C793 ---) [8, 2306, 776057] C61
75) [785777, 1479, 350416] C793 5) [181, 2958, 785777] C793
76) [3170369, 1887, 97600] C793 2) [61, 3774, 3170369] C793
77) [7200241, 2695, 15696] C793 4) [109, 5390, 7200241] C793