Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C819 non-normal (D4) quartic CM field invariants: 144 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [8, 5614, 7878097] C819 ---) [7878097, 2807, 288] C13923
2) [13, 3502, 2459473] C819 137) [2459473, 1751, 151632] C819
3) [17, 2398, 1349473] C819 129) [1349473, 1199, 22032] C819
4) [17, 2318, 1325873] C819 128) [1325873, 1159, 4352] C819
5) [17, 2014, 925921] C819 ---) [925921, 1007, 22032] C3 x C819
6) [17, 2894, 2024177] C819 136) [2024177, 1447, 17408] C819
7) [17, 1646, 638161] C819 122) [638161, 823, 9792] C819
8) [29, 5686, 7897049] C819 144) [7897049, 2843, 46400] C819
9) [29, 4742, 4723337] C819 ---) [4723337, 2371, 224576] C4095
10) [29, 3302, 2679401] C819 ---) [2679401, 1651, 11600] C3 x C819
11) [37, 3822, 3637121] C819 141) [3637121, 1911, 3700] C819
12) [37, 2925, 1899137] C819 134) [1899137, 5850, 959077] C819
13) [41, 2510, 1060721] C819 126) [1060721, 1255, 128576] C819
14) [53, 3662, 3230449] C819 140) [3230449, 1831, 30528] C819
15) [53, 3598, 3151601] C819 139) [3151601, 1799, 21200] C819
16) [53, 3438, 2737873] C819 138) [2737873, 1719, 54272] C819
17) [53, 3833, 3667129] C819 142) [3667129, 7666, 23373] C819
18) [61, 5294, 6971473] C819 143) [6971473, 2647, 8784] C819
19) [61, 2646, 1090553] C819 ---) [1090553, 1323, 164944] C4095
20) [89, 582, 49081] C819 ---) [49081, 291, 8900] C4095
21) [101, 3526, 1013833] C819 125) [1013833, 1763, 523584] C819
22) [109, 2742, 1433177] C819 131) [1433177, 1371, 111616] C819
23) [241, 2795, 1783764] C819 104) [49549, 3025, 1284289] C819
24) [317, 2533, 1381409] C819 130) [1381409, 5066, 890453] C819
25) [353, 1186, 350237] C819 118) [350237, 593, 353] C819
26) [373, 2702, 1610353] C819 132) [1610353, 1351, 53712] C819
27) [389, 989, 236653] C819 115) [236653, 1978, 31509] C819
28) [457, 1830, 829913] C819 90) [16937, 915, 1828] C819
29) [509, 1661, 358753] C819 119) [358753, 3322, 1323909] C819
30) [577, 1298, 31149] C819 ---) [3461, 649, 97513] C117
31) [757, 3502, 2956993] C819 92) [17497, 1751, 27252] C819
32) [773, 1238, 370793] C819 120) [370793, 619, 3092] C819
33) [997, 870, 173273] C819 112) [173273, 435, 3988] C819
34) [1009, 727, 111700] C819 ---) [1117, 857, 9081] C117
35) [1069, 1041, 270653] C819 117) [270653, 2082, 1069] C819
36) [1217, 842, 172373] C819 111) [172373, 421, 1217] C819
37) [1361, 406, 19433] C819 95) [19433, 203, 5444] C819
38) [1621, 2525, 977521] C819 ---) [977521, 5050, 2465541] C4095
39) [1777, 1507, 194148] C819 66) [5393, 3014, 1494457] C819
40) [1877, 3097, 2341073] C819 101) [47777, 6194, 227117] C819
41) [2029, 1986, 4013] C819 ---) [4013, 993, 245509] C117
42) [2593, 1822, 166113] C819 94) [18457, 911, 165952] C819
43) [2729, 3655, 277136] C819 91) [17321, 6719, 11177984] C819
44) [2729, 1295, 303956] C819 106) [75989, 2590, 461201] C819
45) [2753, 1831, 804416] C819 83) [12569, 3662, 134897] C819
46) [2801, 4278, 2379337] C819 75) [8233, 2139, 548996] C819
47) [2833, 4055, 540468] C819 87) [15013, 7073, 7368633] C819
48) [3217, 967, 52816] C819 49) [3301, 1934, 723825] C819
49) [3301, 1934, 723825] C819 48) [3217, 967, 52816] C819
50) [3373, 2573, 95913] C819 80) [10657, 5146, 6236677] C819
51) [3457, 6635, 9407808] C819 ---) [16333, 4297, 169393] C9009
52) [3541, 2801, 1641825] C819 72) [7297, 4651, 1713844] C819
53) [3613, 7285, 4415053] C819 ---) [15277, 4585, 4946197] C7 x C819
54) [3613, 6113, 9081153] C819 82) [12457, 3691, 14452] C819
55) [3709, 2726, 1798425] C819 74) [7993, 1363, 14836] C819
56) [3833, 8443, 17743444] C819 ---) [15349, 4597, 4174137] C3 x C819
57) [3833, 5102, 374801] C819 73) [7649, 2551, 1533200] C819
58) [4021, 7677, 16217] C819 ---) [16217, 4383, 4117504] C7 x C819
59) [4229, 1369, 2293] C819 ---) [2293, 2738, 1864989] C117
60) [4241, 3055, 550976] C819 76) [8609, 6110, 7129121] C819
61) [4241, 6139, 251728] C819 ---) [15733, 5509, 6450561] C3 x C819
62) [4549, 5877, 2574377] C819 88) [15233, 8723, 891604] C819
63) [4733, 8053, 15193] C819 ---) [15193, 7599, 302912] C3 x C819
64) [5021, 2629, 9473] C819 78) [9473, 5258, 6873749] C819
65) [5153, 2867, 1899044] C819 79) [9689, 5734, 623513] C819
66) [5393, 3014, 1494457] C819 39) [1777, 1507, 194148] C819
67) [5449, 8315, 16564176] C819 84) [12781, 4733, 1226025] C819
68) [5581, 5485, 878521] C819 ---) [17929, 10879, 4375504] C3 x C819
69) [5641, 6426, 7593125] C819 81) [12149, 3213, 682561] C819
70) [5813, 662, 16553] C819 ---) [16553, 331, 23252] C3 x C819
71) [6421, 881, 179593] C819 113) [179593, 1762, 57789] C819
72) [7297, 4651, 1713844] C819 52) [3541, 2801, 1641825] C819
73) [7649, 2551, 1533200] C819 57) [3833, 5102, 374801] C819
74) [7993, 1363, 14836] C819 55) [3709, 2726, 1798425] C819
75) [8233, 2139, 548996] C819 46) [2801, 4278, 2379337] C819
76) [8609, 6110, 7129121] C819 60) [4241, 3055, 550976] C819
77) [9049, 5883, 6478400] C819 ---) [4049, 3127, 904900] C117
78) [9473, 5258, 6873749] C819 64) [5021, 2629, 9473] C819
79) [9689, 5734, 623513] C819 65) [5153, 2867, 1899044] C819
80) [10657, 5146, 6236677] C819 50) [3373, 2573, 95913] C819
81) [12149, 3213, 682561] C819 69) [5641, 6426, 7593125] C819
82) [12457, 3691, 14452] C819 54) [3613, 6113, 9081153] C819
83) [12569, 3662, 134897] C819 45) [2753, 1831, 804416] C819
84) [12781, 4733, 1226025] C819 67) [5449, 8315, 16564176] C819
85) [13049, 530, 18029] C819 ---) [149, 265, 13049] C117
86) [13457, 659, 78292] C819 ---) [37, 501, 13457] C63
87) [15013, 7073, 7368633] C819 47) [2833, 4055, 540468] C819
88) [15233, 8723, 891604] C819 62) [4549, 5877, 2574377] C819
89) [15377, 2091, 443392] C819 ---) [433, 1611, 246032] C63
90) [16937, 915, 1828] C819 28) [457, 1830, 829913] C819
91) [17321, 6719, 11177984] C819 43) [2729, 3655, 277136] C819
92) [17497, 1751, 27252] C819 31) [757, 3502, 2956993] C819
93) [17989, 4066, 4061133] C819 ---) [853, 2033, 17989] C91
94) [18457, 911, 165952] C819 42) [2593, 1822, 166113] C819
95) [19433, 203, 5444] C819 37) [1361, 406, 19433] C819
96) [21613, 757, 8181] C819 ---) [101, 1514, 540325] C63
97) [33941, 2498, 338125] C819 ---) [541, 1249, 305469] C117
98) [38977, 311, 14436] C819 ---) [401, 622, 38977] C455
99) [39089, 2135, 348004] C819 ---) [241, 2375, 1407204] C117
100) [47093, 1525, 569633] C819 ---) [113, 1919, 188372] C91
101) [47777, 6194, 227117] C819 40) [1877, 3097, 2341073] C819
102) [48121, 427, 33552] C819 ---) [233, 854, 48121] C91
103) [48973, 673, 100989] C819 ---) [229, 1346, 48973] C273
104) [49549, 3025, 1284289] C819 23) [241, 2795, 1783764] C819
105) [75401, 323, 7232] C819 ---) [113, 646, 75401] C63
106) [75989, 2590, 461201] C819 44) [2729, 1295, 303956] C819
107) [82373, 301, 2057] C819 ---) [17, 602, 82373] C63
108) [83273, 1091, 276752] C819 ---) [353, 2182, 83273] C91
109) [100493, 321, 637] C819 ---) [13, 642, 100493] C63
110) [130457, 443, 16448] C819 ---) [257, 886, 130457] C3 x C117
111) [172373, 421, 1217] C819 36) [1217, 842, 172373] C819
112) [173273, 435, 3988] C819 33) [997, 870, 173273] C819
113) [179593, 1762, 57789] C819 71) [6421, 881, 179593] C819
114) [207833, 1435, 462848] C819 ---) [113, 2870, 207833] C117
115) [236653, 1978, 31509] C819 27) [389, 989, 236653] C819
116) [264889, 963, 165620] C819 ---) [5, 1069, 264889] C91
117) [270653, 2082, 1069] C819 35) [1069, 1041, 270653] C819
118) [350237, 593, 353] C819 25) [353, 1186, 350237] C819
119) [358753, 3322, 1323909] C819 29) [509, 1661, 358753] C819
120) [370793, 619, 3092] C819 32) [773, 1238, 370793] C819
121) [545789, 2917, 899197] C819 ---) [13, 1509, 545789] C117
122) [638161, 823, 9792] C819 7) [17, 1646, 638161] C819
123) [709769, 937, 42050] C819 ---) [8, 1874, 709769] C63
124) [984421, 3233, 398125] C819 ---) [13, 2009, 984421] C117
125) [1013833, 1763, 523584] C819 21) [101, 3526, 1013833] C819
126) [1060721, 1255, 128576] C819 13) [41, 2510, 1060721] C819
127) [1170373, 3857, 1085773] C819 ---) [13, 2165, 1170373] C117
128) [1325873, 1159, 4352] C819 4) [17, 2318, 1325873] C819
129) [1349473, 1199, 22032] C819 3) [17, 2398, 1349473] C819
130) [1381409, 5066, 890453] C819 24) [317, 2533, 1381409] C819
131) [1433177, 1371, 111616] C819 22) [109, 2742, 1433177] C819
132) [1610353, 1351, 53712] C819 26) [373, 2702, 1610353] C819
133) [1639481, 1291, 6800] C819 ---) [17, 2582, 1639481] C91
134) [1899137, 5850, 959077] C819 12) [37, 2925, 1899137] C819
135) [1973417, 1523, 86528] C819 ---) [8, 3046, 1973417] C117
136) [2024177, 1447, 17408] C819 6) [17, 2894, 2024177] C819
137) [2459473, 1751, 151632] C819 2) [13, 3502, 2459473] C819
138) [2737873, 1719, 54272] C819 16) [53, 3438, 2737873] C819
139) [3151601, 1799, 21200] C819 15) [53, 3598, 3151601] C819
140) [3230449, 1831, 30528] C819 14) [53, 3662, 3230449] C819
141) [3637121, 1911, 3700] C819 11) [37, 3822, 3637121] C819
142) [3667129, 7666, 23373] C819 17) [53, 3833, 3667129] C819
143) [6971473, 2647, 8784] C819 18) [61, 5294, 6971473] C819
144) [7897049, 2843, 46400] C819 8) [29, 5686, 7897049] C819