Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C847 non-normal (D4) quartic CM field invariants: 84 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 13774, 47038769] C847 ---) [47038769, 6887, 98000] C2541
2) [5, 12494, 35497009] C847 84) [35497009, 6247, 882000] C847
3) [8, 6494, 10491809] C847 83) [10491809, 3247, 12800] C847
4) [13, 5742, 8159441] C847 ---) [8159441, 2871, 20800] C2541
5) [13, 6414, 10271537] C847 ---) [10271537, 3207, 3328] C2541
6) [37, 2550, 1339097] C847 ---) [1339097, 1275, 71632] C7623
7) [109, 3782, 2571337] C847 82) [2571337, 1891, 251136] C847
8) [173, 4030, 2720513] C847 ---) [2720513, 2015, 334928] C2541
9) [233, 4006, 3773417] C847 ---) [3773417, 2003, 59648] C12705
10) [281, 1115, 82564] C847 70) [20641, 2230, 912969] C847
11) [317, 2782, 1914593] C847 81) [1914593, 1391, 5072] C847
12) [353, 1050, 274213] C847 76) [274213, 525, 353] C847
13) [1009, 682, 15381] C847 ---) [1709, 341, 25225] C121
14) [1021, 205, 8209] C847 46) [8209, 410, 9189] C847
15) [1181, 1193, 355517] C847 78) [355517, 2386, 1181] C847
16) [1433, 2134, 15017] C847 57) [15017, 1067, 280868] C847
17) [1601, 351, 11188] C847 ---) [2797, 702, 78449] C121
18) [1601, 446, 24113] C847 ---) [24113, 223, 6404] C121
19) [1601, 2818, 134525] C847 ---) [5381, 1409, 462689] C121
20) [1801, 5279, 6768400] C847 63) [16921, 4195, 3176964] C847
21) [2029, 642, 94925] C847 ---) [3797, 321, 2029] C121
22) [2029, 905, 179901] C847 ---) [2221, 1810, 99421] C121
23) [2269, 5769, 15233] C847 58) [15233, 3247, 1778896] C847
24) [2281, 4403, 329652] C847 49) [9157, 3581, 1005921] C847
25) [2789, 4773, 3586201] C847 ---) [12409, 3627, 1349876] C7623
26) [2861, 5213, 6775961] C847 54) [12809, 3515, 11444] C847
27) [2897, 1123, 53828] C847 ---) [13457, 2246, 1045817] C11011
28) [3089, 2922, 1529077] C847 52) [12637, 1461, 151361] C847
29) [3257, 3207, 283984] C847 66) [17749, 6414, 9148913] C847
30) [3449, 2595, 234064] C847 56) [14629, 5190, 5797769] C847
31) [3593, 1110, 250537] C847 37) [5113, 555, 14372] C847
32) [3697, 4887, 202448] C847 53) [12653, 5833, 5061193] C847
33) [4201, 4835, 4078836] C847 ---) [12589, 5509, 1214089] C11 x C847
34) [4217, 323, 25028] C847 45) [6257, 646, 4217] C847
35) [4229, 893, 113725] C847 ---) [4549, 1786, 342549] C121
36) [4801, 5919, 7605200] C847 68) [19013, 8193, 235249] C847
37) [5113, 555, 14372] C847 31) [3593, 1110, 250537] C847
38) [5413, 549, 9041] C847 48) [9041, 1098, 265237] C847
39) [5581, 5370, 757589] C847 59) [15461, 2685, 1612909] C847
40) [5653, 757, 141849] C847 60) [15761, 1514, 5653] C847
41) [5701, 946, 18493] C847 67) [18493, 473, 51309] C847
42) [5801, 7554, 1990813] C847 62) [16453, 3777, 3068729] C847
43) [5861, 329, 13873] C847 55) [13873, 658, 52749] C847
44) [5897, 10170, 19040293] C847 69) [19813, 5085, 1704233] C847
45) [6257, 646, 4217] C847 34) [4217, 323, 25028] C847
46) [8209, 410, 9189] C847 14) [1021, 205, 8209] C847
47) [9029, 2621, 306629] C847 ---) [1061, 1885, 442421] C121
48) [9041, 1098, 265237] C847 38) [5413, 549, 9041] C847
49) [9157, 3581, 1005921] C847 24) [2281, 4403, 329652] C847
50) [10313, 6359, 2866916] C847 ---) [4241, 4723, 4125200] C121
51) [12497, 2807, 17156] C847 ---) [4289, 5614, 7810625] C121
52) [12637, 1461, 151361] C847 28) [3089, 2922, 1529077] C847
53) [12653, 5833, 5061193] C847 32) [3697, 4887, 202448] C847
54) [12809, 3515, 11444] C847 26) [2861, 5213, 6775961] C847
55) [13873, 658, 52749] C847 43) [5861, 329, 13873] C847
56) [14629, 5190, 5797769] C847 30) [3449, 2595, 234064] C847
57) [15017, 1067, 280868] C847 16) [1433, 2134, 15017] C847
58) [15233, 3247, 1778896] C847 23) [2269, 5769, 15233] C847
59) [15461, 2685, 1612909] C847 39) [5581, 5370, 757589] C847
60) [15761, 1514, 5653] C847 40) [5653, 757, 141849] C847
61) [16217, 1115, 306752] C847 ---) [4793, 2230, 16217] C121
62) [16453, 3777, 3068729] C847 42) [5801, 7554, 1990813] C847
63) [16921, 4195, 3176964] C847 20) [1801, 5279, 6768400] C847
64) [17569, 2935, 884196] C847 ---) [2729, 5870, 5077441] C121
65) [17569, 1787, 56052] C847 ---) [173, 1149, 17569] C121
66) [17749, 6414, 9148913] C847 29) [3257, 3207, 283984] C847
67) [18493, 473, 51309] C847 41) [5701, 946, 18493] C847
68) [19013, 8193, 235249] C847 36) [4801, 5919, 7605200] C847
69) [19813, 5085, 1704233] C847 44) [5897, 10170, 19040293] C847
70) [20641, 2230, 912969] C847 10) [281, 1115, 82564] C847
71) [23629, 946, 129213] C847 ---) [293, 473, 23629] C121
72) [46817, 946, 36461] C847 ---) [101, 473, 46817] C121
73) [71569, 279, 1568] C847 ---) [8, 558, 71569] C121
74) [183329, 589, 40898] C847 ---) [8, 1178, 183329] C121
75) [236297, 515, 7232] C847 ---) [113, 1030, 236297] C121
76) [274213, 525, 353] C847 12) [353, 1050, 274213] C847
77) [324529, 789, 74498] C847 ---) [8, 1578, 324529] C121
78) [355517, 2386, 1181] C847 15) [1181, 1193, 355517] C847
79) [1142593, 1111, 22932] C847 ---) [13, 2222, 1142593] C121
80) [1416713, 1475, 189728] C847 ---) [8, 2950, 1416713] C121
81) [1914593, 1391, 5072] C847 11) [317, 2782, 1914593] C847
82) [2571337, 1891, 251136] C847 7) [109, 3782, 2571337] C847
83) [10491809, 3247, 12800] C847 3) [8, 6494, 10491809] C847
84) [35497009, 6247, 882000] C847 2) [5, 12494, 35497009] C847