Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C869 non-normal (D4) quartic CM field invariants: 65 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [5, 12502, 39036281] C869 ---) [39036281, 6251, 9680] C2607
2) [5, 10702, 26559521] C869 ---) [26559521, 5351, 518420] C16511
3) [8, 5294, 7006481] C869 65) [7006481, 2647, 32] C869
4) [17, 2062, 906289] C869 ---) [906289, 1031, 39168] C2607
5) [17, 2830, 1149233] C869 62) [1149233, 1415, 213248] C869
6) [29, 4798, 5569601] C869 ---) [5569601, 2399, 46400] C301543
7) [37, 5022, 6302753] C869 ---) [6302753, 2511, 592] C2607
8) [61, 3990, 3976121] C869 64) [3976121, 1995, 976] C869
9) [173, 2062, 664369] C869 60) [664369, 1031, 99648] C869
10) [293, 2134, 1119737] C869 ---) [1119737, 1067, 4688] C4345
11) [857, 986, 157349] C869 59) [157349, 493, 21425] C869
12) [953, 2399, 1146944] C869 55) [17921, 3931, 95300] C869
13) [1297, 735, 41348] C869 ---) [10337, 1470, 374833] C79
14) [2137, 1675, 418788] C869 46) [11633, 3350, 1130473] C869
15) [2377, 2454, 554729] C869 ---) [11321, 1227, 237700] C13035
16) [2393, 562, 69389] C869 57) [69389, 281, 2393] C869
17) [2833, 5207, 3207924] C869 43) [9901, 4013, 637425] C869
18) [3049, 2475, 250064] C869 ---) [15629, 4950, 5125369] C7821
19) [3389, 3637, 2689297] C869 52) [15913, 7274, 2470581] C869
20) [3433, 6715, 2167632] C869 51) [15053, 5277, 3433] C869
21) [3529, 4663, 4355136] C869 39) [7561, 4955, 4079524] C869
22) [3613, 5653, 2908321] C869 54) [17209, 5843, 8324352] C869
23) [3697, 1691, 41092] C869 ---) [10273, 3382, 2695113] C7821
24) [3761, 2447, 66832] C869 26) [4177, 3699, 2542436] C869
25) [3833, 4731, 3984772] C869 41) [8233, 4175, 551952] C869
26) [4177, 3699, 2542436] C869 24) [3761, 2447, 66832] C869
27) [4261, 4893, 2762981] C869 53) [16349, 7149, 5219725] C869
28) [4789, 3993, 622937] C869 47) [12713, 7986, 13452301] C869
29) [4801, 602, 71397] C869 40) [7933, 301, 4801] C869
30) [4813, 989, 98937] C869 44) [10993, 1978, 582373] C869
31) [4817, 1611, 214096] C869 48) [13381, 3222, 1738937] C869
32) [4957, 2193, 11393] C869 45) [11393, 4386, 4763677] C869
33) [5021, 3349, 482993] C869 42) [9857, 6698, 9283829] C869
34) [5209, 3246, 1300625] C869 ---) [2081, 1623, 333376] C4345
35) [5669, 6270, 4023169] C869 50) [13921, 3135, 1451264] C869
36) [5693, 1230, 13873] C869 49) [13873, 615, 91088] C869
37) [5701, 5401, 3585625] C869 38) [5737, 5431, 4469584] C869
38) [5737, 5431, 4469584] C869 37) [5701, 5401, 3585625] C869
39) [7561, 4955, 4079524] C869 21) [3529, 4663, 4355136] C869
40) [7933, 301, 4801] C869 29) [4801, 602, 71397] C869
41) [8233, 4175, 551952] C869 25) [3833, 4731, 3984772] C869
42) [9857, 6698, 9283829] C869 33) [5021, 3349, 482993] C869
43) [9901, 4013, 637425] C869 17) [2833, 5207, 3207924] C869
44) [10993, 1978, 582373] C869 30) [4813, 989, 98937] C869
45) [11393, 4386, 4763677] C869 32) [4957, 2193, 11393] C869
46) [11633, 3350, 1130473] C869 14) [2137, 1675, 418788] C869
47) [12713, 7986, 13452301] C869 28) [4789, 3993, 622937] C869
48) [13381, 3222, 1738937] C869 31) [4817, 1611, 214096] C869
49) [13873, 615, 91088] C869 36) [5693, 1230, 13873] C869
50) [13921, 3135, 1451264] C869 35) [5669, 6270, 4023169] C869
51) [15053, 5277, 3433] C869 20) [3433, 6715, 2167632] C869
52) [15913, 7274, 2470581] C869 19) [3389, 3637, 2689297] C869
53) [16349, 7149, 5219725] C869 27) [4261, 4893, 2762981] C869
54) [17209, 5843, 8324352] C869 22) [3613, 5653, 2908321] C869
55) [17921, 3931, 95300] C869 12) [953, 2399, 1146944] C869
56) [22501, 1821, 553373] C869 ---) [197, 1449, 22501] C79
57) [69389, 281, 2393] C869 16) [2393, 562, 69389] C869
58) [94961, 543, 49972] C869 ---) [13, 1086, 94961] C79
59) [157349, 493, 21425] C869 11) [857, 986, 157349] C869
60) [664369, 1031, 99648] C869 9) [173, 2062, 664369] C869
61) [847789, 1713, 521645] C869 ---) [5, 1909, 847789] C79
62) [1149233, 1415, 213248] C869 5) [17, 2830, 1149233] C869
63) [2226569, 1859, 307328] C869 ---) [8, 3718, 2226569] C79
64) [3976121, 1995, 976] C869 8) [61, 3990, 3976121] C869
65) [7006481, 2647, 32] C869 3) [8, 5294, 7006481] C869