Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C871 non-normal (D4) quartic CM field invariants: 68 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [13, 4998, 6241673] C871 ---) [6241673, 2499, 832] C18291
2) [13, 4662, 5220569] C871 68) [5220569, 2331, 53248] C871
3) [17, 1822, 790753] C871 64) [790753, 911, 9792] C871
4) [61, 4086, 3783449] C871 67) [3783449, 2043, 97600] C871
5) [101, 3638, 2526617] C871 66) [2526617, 1819, 195536] C871
6) [173, 3502, 1471633] C871 65) [1471633, 1751, 398592] C871
7) [293, 1486, 383281] C871 ---) [383281, 743, 42192] C6097
8) [853, 1005, 252293] C871 61) [252293, 2010, 853] C871
9) [929, 1646, 142225] C871 37) [5689, 823, 133776] C871
10) [977, 2863, 747584] C871 47) [11681, 3103, 1563200] C871
11) [997, 1233, 337949] C871 62) [337949, 2466, 168493] C871
12) [2017, 4379, 4708692] C871 52) [14533, 4769, 5246217] C871
13) [2129, 1855, 50704] C871 20) [3169, 2079, 851600] C871
14) [2161, 618, 86837] C871 ---) [86837, 309, 2161] C2613
15) [2273, 1415, 199952] C871 ---) [12497, 2830, 1202417] C6097
16) [2293, 4057, 890281] C871 58) [18169, 6047, 742932] C871
17) [2377, 1466, 71397] C871 40) [7933, 733, 116473] C871
18) [2657, 4495, 2414848] C871 43) [9433, 3687, 170048] C871
19) [2689, 5535, 2334164] C871 48) [11909, 2893, 1422481] C871
20) [3169, 2079, 851600] C871 13) [2129, 1855, 50704] C871
21) [3361, 1855, 415764] C871 46) [11549, 3710, 1777969] C871
22) [3413, 1029, 18121] C871 57) [18121, 2058, 986357] C871
23) [3433, 2431, 851776] C871 51) [13309, 4862, 2502657] C871
24) [3529, 2199, 128144] C871 41) [8009, 4398, 4323025] C871
25) [3709, 1718, 678537] C871 42) [8377, 859, 14836] C871
26) [3733, 1409, 159417] C871 55) [17713, 2818, 1347613] C871
27) [3917, 1973, 964369] C871 60) [19681, 3946, 35253] C871
28) [4273, 2818, 1831453] C871 44) [10837, 1409, 38457] C871
29) [4957, 722, 110493] C871 49) [12277, 361, 4957] C871
30) [5557, 8577, 18401] C871 59) [18401, 8399, 2689588] C871
31) [5569, 5622, 3535625] C871 36) [5657, 2811, 1091524] C871
32) [5573, 449, 15569] C871 53) [15569, 898, 139325] C871
33) [5573, 3981, 884401] C871 56) [18049, 7962, 12310757] C871
34) [5581, 3957, 2205281] C871 ---) [13049, 7914, 6836725] C6097
35) [5653, 1145, 156753] C871 ---) [17417, 2290, 684013] C2613
36) [5657, 2811, 1091524] C871 31) [5569, 5622, 3535625] C871
37) [5689, 823, 133776] C871 9) [929, 1646, 142225] C871
38) [5801, 2251, 1265300] C871 50) [12653, 4502, 5801] C871
39) [5897, 8143, 11445248] C871 45) [11177, 4379, 3986372] C871
40) [7933, 733, 116473] C871 17) [2377, 1466, 71397] C871
41) [8009, 4398, 4323025] C871 24) [3529, 2199, 128144] C871
42) [8377, 859, 14836] C871 25) [3709, 1718, 678537] C871
43) [9433, 3687, 170048] C871 18) [2657, 4495, 2414848] C871
44) [10837, 1409, 38457] C871 28) [4273, 2818, 1831453] C871
45) [11177, 4379, 3986372] C871 39) [5897, 8143, 11445248] C871
46) [11549, 3710, 1777969] C871 21) [3361, 1855, 415764] C871
47) [11681, 3103, 1563200] C871 10) [977, 2863, 747584] C871
48) [11909, 2893, 1422481] C871 19) [2689, 5535, 2334164] C871
49) [12277, 361, 4957] C871 29) [4957, 722, 110493] C871
50) [12653, 4502, 5801] C871 38) [5801, 2251, 1265300] C871
51) [13309, 4862, 2502657] C871 23) [3433, 2431, 851776] C871
52) [14533, 4769, 5246217] C871 12) [2017, 4379, 4708692] C871
53) [15569, 898, 139325] C871 32) [5573, 449, 15569] C871
54) [15877, 1777, 118629] C871 ---) [269, 1261, 396925] C67
55) [17713, 2818, 1347613] C871 26) [3733, 1409, 159417] C871
56) [18049, 7962, 12310757] C871 33) [5573, 3981, 884401] C871
57) [18121, 2058, 986357] C871 22) [3413, 1029, 18121] C871
58) [18169, 6047, 742932] C871 16) [2293, 4057, 890281] C871
59) [18401, 8399, 2689588] C871 30) [5557, 8577, 18401] C871
60) [19681, 3946, 35253] C871 27) [3917, 1973, 964369] C871
61) [252293, 2010, 853] C871 8) [853, 1005, 252293] C871
62) [337949, 2466, 168493] C871 11) [997, 1233, 337949] C871
63) [391661, 641, 4805] C871 ---) [5, 1282, 391661] C67
64) [790753, 911, 9792] C871 3) [17, 1822, 790753] C871
65) [1471633, 1751, 398592] C871 6) [173, 3502, 1471633] C871
66) [2526617, 1819, 195536] C871 5) [101, 3638, 2526617] C871
67) [3783449, 2043, 97600] C871 4) [61, 4086, 3783449] C871
68) [5220569, 2331, 53248] C871 2) [13, 4662, 5220569] C871