Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C897 non-normal (D4) quartic CM field invariants: 136 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [13, 7209, 12990701] C897 ---) [12990701, 12541, 10090093] C15249
2) [53, 3958, 3251609] C897 128) [3251609, 1979, 166208] C897
3) [53, 6262, 9636953] C897 ---) [9636953, 3131, 41552] C3 x C897
4) [73, 1278, 291521] C897 113) [291521, 639, 29200] C897
5) [97, 454, 37561] C897 100) [37561, 227, 3492] C897
6) [157, 5174, 5878681] C897 131) [5878681, 2587, 203472] C897
7) [233, 4006, 3877801] C897 ---) [3877801, 2003, 33552] C47541
8) [233, 2838, 2009833] C897 101) [41017, 1419, 932] C897
9) [257, 2134, 546361] C897 ---) [546361, 1067, 148032] C299
10) [269, 3014, 1840649] C897 125) [1840649, 1507, 107600] C897
11) [293, 1750, 596857] C897 117) [596857, 875, 42192] C897
12) [313, 1571, 616932] C897 91) [17137, 1715, 11268] C897
13) [421, 966, 226553] C897 110) [226553, 483, 1684] C897
14) [509, 1046, 240953] C897 111) [240953, 523, 8144] C897
15) [613, 1245, 379997] C897 115) [379997, 2490, 30037] C897
16) [641, 926, 50273] C897 103) [50273, 463, 41024] C897
17) [733, 894, 12161] C897 ---) [12161, 447, 46912] C3289
18) [773, 1246, 375761] C897 114) [375761, 623, 3092] C897
19) [857, 2279, 278416] C897 92) [17401, 4131, 85700] C897
20) [953, 1135, 236048] C897 83) [14753, 2270, 344033] C897
21) [1013, 910, 142193] C897 107) [142193, 455, 16208] C897
22) [1373, 613, 35933] C897 ---) [35933, 1226, 232037] C1495
23) [1409, 563, 70436] C897 ---) [17609, 1126, 35225] C3 x C897
24) [1433, 970, 183637] C897 108) [183637, 485, 12897] C897
25) [1609, 4543, 2253456] C897 86) [15649, 3427, 2838276] C897
26) [1697, 674, 106781] C897 ---) [106781, 337, 1697] C4485
27) [2341, 2773, 152001] C897 89) [16889, 5546, 7081525] C897
28) [2381, 5197, 6489697] C897 94) [17977, 6123, 9152564] C897
29) [2557, 1621, 426141] C897 56) [5261, 3242, 923077] C897
30) [2657, 3467, 23204] C897 60) [5801, 2519, 1062800] C897
31) [2729, 3618, 2999581] C897 93) [17749, 1809, 68225] C897
32) [2729, 3043, 1168100] C897 73) [11681, 5959, 43664] C897
33) [2753, 3630, 475153] C897 70) [9697, 1815, 704768] C897
34) [2753, 1383, 48016] C897 37) [3001, 2766, 1720625] C897
35) [2789, 6265, 7999009] C897 ---) [15121, 5107, 6425856] C4485
36) [2917, 261, 16301] C897 ---) [16301, 522, 2917] C299
37) [3001, 2766, 1720625] C897 34) [2753, 1383, 48016] C897
38) [3061, 3781, 3573225] C897 ---) [15881, 7562, 3061] C3 x C897
39) [3313, 4802, 980829] C897 74) [12109, 2401, 1195993] C897
40) [3433, 4955, 4242132] C897 77) [13093, 4645, 415393] C897
41) [3433, 3306, 2059541] C897 90) [17021, 1653, 168217] C897
42) [3529, 330, 13109] C897 78) [13109, 165, 3529] C897
43) [3673, 4931, 54052] C897 80) [13513, 6127, 4760208] C897
44) [3709, 3593, 1179117] C897 82) [14557, 7186, 8193181] C897
45) [3889, 387, 13136] C897 ---) [821, 774, 97225] C299
46) [4273, 5162, 4593429] C897 66) [6301, 2581, 517033] C897
47) [4289, 2735, 67604] C897 ---) [16901, 5470, 7209809] C6279
48) [4337, 2154, 726229] C897 84) [14821, 1077, 108425] C897
49) [4561, 2450, 1482381] C897 96) [18301, 1225, 4561] C897
50) [4657, 3095, 437652] C897 75) [12157, 6190, 7828417] C897
51) [5021, 3690, 9829] C897 ---) [9829, 1845, 848549] C4485
52) [5021, 6374, 9835625] C897 ---) [15737, 3187, 80336] C3 x C897
53) [5081, 586, 65525] C897 ---) [2621, 293, 5081] C299
54) [5261, 362, 11717] C897 ---) [11717, 181, 5261] C299
55) [5261, 1021, 248773] C897 ---) [5077, 2042, 47349] C299
56) [5261, 3242, 923077] C897 29) [2557, 1621, 426141] C897
57) [5297, 583, 20084] C897 ---) [5021, 1166, 259553] C299
58) [5569, 2210, 129501] C897 ---) [14389, 1105, 272881] C3 x C897
59) [5689, 3011, 899748] C897 ---) [2777, 3699, 2753476] C3 x C897
60) [5801, 2519, 1062800] C897 30) [2657, 3467, 23204] C897
61) [5813, 7685, 5230033] C897 ---) [18097, 6975, 4557392] C3 x C897
62) [5881, 8547, 18261332] C897 87) [15797, 7417, 10873969] C897
63) [5881, 7842, 671741] C897 81) [13709, 3921, 3675625] C897
64) [6053, 2413, 1409] C897 ---) [1409, 1943, 605300] C299
65) [6053, 2417, 357313] C897 ---) [2953, 3807, 1549568] C299
66) [6301, 2581, 517033] C897 46) [4273, 5162, 4593429] C897
67) [8069, 2857, 570037] C897 ---) [3373, 5714, 5882301] C299
68) [8837, 2218, 346181] C897 ---) [2861, 1109, 220925] C299
69) [9413, 5314, 2503757] C897 ---) [4733, 2657, 1138973] C299
70) [9697, 1815, 704768] C897 33) [2753, 3630, 475153] C897
71) [10733, 4222, 163121] C897 ---) [3329, 2111, 1073300] C299
72) [11197, 593, 85113] C897 ---) [193, 1186, 11197] C299
73) [11681, 5959, 43664] C897 32) [2729, 3043, 1168100] C897
74) [12109, 2401, 1195993] C897 39) [3313, 4802, 980829] C897
75) [12157, 6190, 7828417] C897 50) [4657, 3095, 437652] C897
76) [12821, 3082, 1913125] C897 ---) [3061, 1541, 115389] C299
77) [13093, 4645, 415393] C897 40) [3433, 4955, 4242132] C897
78) [13109, 165, 3529] C897 42) [3529, 330, 13109] C897
79) [13457, 514, 12221] C897 ---) [101, 257, 13457] C69
80) [13513, 6127, 4760208] C897 43) [3673, 4931, 54052] C897
81) [13709, 3921, 3675625] C897 63) [5881, 7842, 671741] C897
82) [14557, 7186, 8193181] C897 44) [3709, 3593, 1179117] C897
83) [14753, 2270, 344033] C897 20) [953, 1135, 236048] C897
84) [14821, 1077, 108425] C897 48) [4337, 2154, 726229] C897
85) [15193, 4607, 106308] C897 ---) [2953, 5015, 4922532] C299
86) [15649, 3427, 2838276] C897 25) [1609, 4543, 2253456] C897
87) [15797, 7417, 10873969] C897 62) [5881, 8547, 18261332] C897
88) [16141, 5689, 1307925] C897 ---) [5813, 8269, 15511501] C299
89) [16889, 5546, 7081525] C897 27) [2341, 2773, 152001] C897
90) [17021, 1653, 168217] C897 41) [3433, 3306, 2059541] C897
91) [17137, 1715, 11268] C897 12) [313, 1571, 616932] C897
92) [17401, 4131, 85700] C897 19) [857, 2279, 278416] C897
93) [17749, 1809, 68225] C897 31) [2729, 3618, 2999581] C897
94) [17977, 6123, 9152564] C897 28) [2381, 5197, 6489697] C897
95) [18097, 1750, 476073] C897 ---) [313, 875, 72388] C299
96) [18301, 1225, 4561] C897 49) [4561, 2450, 1482381] C897
97) [19949, 7226, 11058869] C897 ---) [5981, 3613, 498725] C299
98) [24197, 1246, 977] C897 ---) [977, 623, 96788] C299
99) [24917, 165, 577] C897 ---) [577, 330, 24917] C2093
100) [37561, 227, 3492] C897 5) [97, 454, 37561] C897
101) [41017, 1419, 932] C897 8) [233, 2838, 2009833] C897
102) [43321, 1194, 183125] C897 ---) [293, 597, 43321] C299
103) [50273, 463, 41024] C897 16) [641, 926, 50273] C897
104) [118033, 535, 42048] C897 ---) [73, 1070, 118033] C299
105) [121997, 353, 653] C897 ---) [653, 706, 121997] C299
106) [124513, 1771, 5904] C897 ---) [41, 1527, 498052] C69
107) [142193, 455, 16208] C897 21) [1013, 910, 142193] C897
108) [183637, 485, 12897] C897 24) [1433, 970, 183637] C897
109) [217517, 2098, 230333] C897 ---) [797, 1049, 217517] C299
110) [226553, 483, 1684] C897 13) [421, 966, 226553] C897
111) [240953, 523, 8144] C897 14) [509, 1046, 240953] C897
112) [263849, 523, 2420] C897 ---) [5, 1046, 263849] C69
113) [291521, 639, 29200] C897 4) [73, 1278, 291521] C897
114) [375761, 623, 3092] C897 18) [773, 1246, 375761] C897
115) [379997, 2490, 30037] C897 15) [613, 1245, 379997] C897
116) [380929, 727, 36900] C897 ---) [41, 1454, 380929] C69
117) [596857, 875, 42192] C897 11) [293, 1750, 596857] C897
118) [708857, 1067, 107408] C897 ---) [137, 2134, 708857] C299
119) [760637, 1049, 84941] C897 ---) [101, 2098, 760637] C299
120) [1014521, 3071, 75088] C897 ---) [13, 2169, 1014521] C299
121) [1050817, 1375, 209952] C897 ---) [8, 2750, 1050817] C299
122) [1112513, 1695, 440128] C897 ---) [13, 3390, 1112513] C299
123) [1393313, 1191, 6292] C897 ---) [13, 2382, 1393313] C299
124) [1780081, 2759, 1458000] C897 ---) [5, 2877, 1780081] C299
125) [1840649, 1507, 107600] C897 10) [269, 3014, 1840649] C897
126) [2464361, 1579, 7220] C897 ---) [5, 3158, 2464361] C299
127) [2692121, 2011, 338000] C897 ---) [5, 3433, 2692121] C299
128) [3251609, 1979, 166208] C897 2) [53, 3958, 3251609] C897
129) [5359769, 2387, 84500] C897 ---) [5, 4774, 5359769] C299
130) [5523809, 2383, 38720] C897 ---) [5, 4766, 5523809] C299
131) [5878681, 2587, 203472] C897 6) [157, 5174, 5878681] C897
132) [8258137, 2875, 1872] C897 ---) [13, 5750, 8258137] C299
133) [8425433, 2971, 100352] C897 ---) [8, 5942, 8425433] C299
134) [9131849, 3043, 32000] C897 ---) [5, 6086, 9131849] C299
135) [9626137, 3163, 94608] C897 ---) [73, 6326, 9626137] C299
136) [9701177, 3115, 512] C897 ---) [8, 6230, 9701177] C299