Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C9 x C108 non-normal (D4) quartic CM field invariants: 53 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [109, 3366, 2720873] C9 x C108 ---) [2720873, 1683, 27904] C9 x C2052
2) [184, 2446, 1483953] C9 x C108 ---) [1483953, 1223, 2944] C18 x C270
3) [197, 3446, 2350937] C9 x C108 52) [2350937, 1723, 154448] C9 x C108
4) [241, 2337, 98636] C9 x C108 ---) [98636, 4674, 5067025] C3 x C9 x C108
5) [593, 621, 71356] C9 x C108 30) [71356, 1242, 100217] C9 x C108
6) [1004, 1054, 133153] C9 x C108 37) [133153, 527, 36144] C9 x C108
7) [1077, 880, 11587] C9 x C108 ---) [46348, 1760, 728052] C18 x C54
8) [1129, 713, 45522] C9 x C108 ---) [2248, 1426, 326281] C2 x C108
9) [1129, 285, 6476] C9 x C108 ---) [6476, 570, 55321] C108
10) [1129, 801, 153344] C9 x C108 ---) [2396, 1602, 28225] C108
11) [3049, 2043, 1042700] C9 x C108 24) [41708, 4086, 3049] C9 x C108
12) [3137, 122, 584] C9 x C108 ---) [584, 244, 12548] C2 x C108
13) [5581, 5453, 5914375] C9 x C108 22) [37852, 10906, 6077709] C9 x C108
14) [6616, 836, 68868] C9 x C108 ---) [1913, 418, 26464] C108
15) [7573, 1106, 275517] C9 x C108 ---) [253, 553, 7573] C108
16) [14876, 1022, 201617] C9 x C108 ---) [1193, 511, 14876] C108
17) [17273, 485, 19942] C9 x C108 ---) [472, 970, 155457] C2 x C54
18) [17273, 1739, 751712] C9 x C108 ---) [1112, 3478, 17273] C2 x C54
19) [18637, 311, 19521] C9 x C108 ---) [241, 622, 18637] C18 x C54
20) [25177, 658, 7533] C9 x C108 ---) [93, 329, 25177] C54
21) [36073, 217, 2754] C9 x C108 ---) [136, 434, 36073] C2 x C36
22) [37852, 10906, 6077709] C9 x C108 13) [5581, 5453, 5914375] C9 x C108
23) [40709, 1154, 170093] C9 x C108 ---) [77, 577, 40709] C108
24) [41708, 4086, 3049] C9 x C108 11) [3049, 2043, 1042700] C9 x C108
25) [46649, 219, 328] C9 x C108 ---) [328, 438, 46649] C4 x C108
26) [54764, 1336, 391460] C9 x C108 ---) [185, 668, 13691] C2 x C108
27) [59061, 269, 3325] C9 x C108 ---) [133, 538, 59061] C2 x C54
28) [60193, 994, 6237] C9 x C108 ---) [77, 497, 60193] C2 x C54
29) [69241, 355, 14196] C9 x C108 ---) [21, 710, 69241] C54
30) [71356, 1242, 100217] C9 x C108 5) [593, 621, 71356] C9 x C108
31) [80341, 285, 221] C9 x C108 ---) [221, 570, 80341] C2 x C108
32) [83273, 323, 5264] C9 x C108 ---) [329, 646, 83273] C108
33) [83481, 635, 79936] C9 x C108 ---) [1249, 1270, 83481] C108
34) [107641, 736, 27783] C9 x C108 ---) [28, 1472, 430564] C36
35) [110009, 459, 25168] C9 x C108 ---) [13, 918, 110009] C108
36) [121129, 1642, 189525] C9 x C108 ---) [21, 821, 121129] C54
37) [133153, 527, 36144] C9 x C108 6) [1004, 1054, 133153] C9 x C108
38) [153481, 835, 135936] C9 x C108 ---) [236, 1670, 153481] C2 x C54
39) [155473, 743, 99144] C9 x C108 ---) [136, 1486, 155473] C18 x C108
40) [163597, 637, 60543] C9 x C108 ---) [28, 1274, 163597] C2 x C54
41) [174364, 856, 8820] C9 x C108 ---) [5, 428, 43591] C108
42) [245777, 505, 2312] C9 x C108 ---) [8, 1010, 245777] C2 x C54
43) [251897, 843, 114688] C9 x C108 ---) [28, 1686, 251897] C108
44) [265989, 517, 325] C9 x C108 ---) [13, 1034, 265989] C108
45) [282181, 565, 9261] C9 x C108 ---) [21, 1130, 282181] C54
46) [321713, 569, 512] C9 x C108 ---) [8, 1138, 321713] C2 x C54
47) [597353, 773, 44] C9 x C108 ---) [44, 1546, 597353] C108
48) [833753, 1051, 67712] C9 x C108 ---) [8, 2102, 833753] C108
49) [876637, 937, 333] C9 x C108 ---) [37, 1874, 876637] C108
50) [991657, 997, 588] C9 x C108 ---) [12, 1994, 991657] C2 x C54
51) [1488521, 1539, 220000] C9 x C108 ---) [88, 3078, 1488521] C9 x C54
52) [2350937, 1723, 154448] C9 x C108 3) [197, 3446, 2350937] C9 x C108
53) [5033521, 2311, 76800] C9 x C108 ---) [12, 4622, 5033521] C18 x C54