Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C903 non-normal (D4) quartic CM field invariants: 145 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [8, 4190, 4094113] C903 ---) [4094113, 2095, 73728] C9933
2) [8, 5470, 7172897] C903 ---) [7172897, 2735, 76832] C4515
3) [17, 2590, 1398497] C903 133) [1398497, 1295, 69632] C903
4) [17, 3134, 2438081] C903 137) [2438081, 1567, 4352] C903
5) [37, 4278, 4537433] C903 141) [4537433, 2139, 9472] C903
6) [113, 758, 141833] C903 121) [141833, 379, 452] C903
7) [137, 1831, 768784] C903 112) [48049, 2631, 1718528] C903
8) [241, 2694, 700025] C903 106) [28001, 1347, 278596] C903
9) [257, 662, 6761] C903 ---) [6761, 331, 25700] C301
10) [277, 3830, 3029017] C903 140) [3029017, 1915, 159552] C903
11) [281, 1546, 587413] C903 128) [587413, 773, 2529] C903
12) [389, 1589, 631133] C903 129) [631133, 3178, 389] C903
13) [577, 1590, 41177] C903 ---) [41177, 795, 147712] C129
14) [577, 262, 7929] C903 ---) [881, 131, 2308] C129
15) [593, 1011, 73924] C903 100) [18481, 2022, 726425] C903
16) [701, 998, 204137] C903 122) [204137, 499, 11216] C903
17) [733, 1078, 278793] C903 ---) [30977, 539, 2932] C6923
18) [1009, 1759, 531108] C903 ---) [14753, 3518, 969649] C129
19) [1009, 866, 86589] C903 ---) [1069, 433, 25225] C129
20) [1097, 2863, 743488] C903 84) [11617, 2535, 70208] C903
21) [1201, 1843, 68212] C903 ---) [17053, 3686, 3123801] C3 x C903
22) [1373, 710, 38153] C903 ---) [38153, 355, 21968] C301
23) [1637, 826, 111637] C903 117) [111637, 413, 14733] C903
24) [1801, 3479, 1004688] C903 71) [6977, 2819, 1217476] C903
25) [1901, 2713, 1733161] C903 ---) [4801, 1767, 30416] C301
26) [2017, 1963, 345636] C903 76) [9601, 3926, 2470825] C903
27) [2213, 289, 15901] C903 ---) [15901, 578, 19917] C301
28) [2269, 4225, 740929] C903 ---) [15121, 4063, 3276436] C4515
29) [2297, 3022, 1695089] C903 ---) [14009, 1511, 147008] C9933
30) [2377, 5219, 6808896] C903 ---) [11821, 2897, 534825] C3 x C903
31) [2441, 595, 39076] C903 77) [9769, 1190, 197721] C903
32) [2521, 3859, 3036628] C903 93) [15493, 6313, 2120161] C903
33) [2677, 1893, 895193] C903 64) [5297, 3786, 2677] C903
34) [2729, 5251, 1729300] C903 97) [17293, 5473, 221049] C903
35) [2917, 4366, 4718817] C903 ---) [6473, 2183, 11668] C301
36) [3001, 1123, 314532] C903 75) [8737, 2246, 3001] C903
37) [3041, 5126, 5352569] C903 ---) [18521, 2563, 304100] C3 x C903
38) [3049, 1715, 734544] C903 61) [5101, 3430, 3049] C903
39) [3169, 330, 14549] C903 92) [14549, 165, 3169] C903
40) [3329, 3871, 229904] C903 91) [14369, 6203, 8322500] C903
41) [3329, 7531, 14078288] C903 ---) [17957, 4901, 3199169] C7 x C903
42) [3361, 5527, 2124052] C903 80) [10837, 3433, 971329] C903
43) [3433, 3583, 2583808] C903 78) [10093, 5125, 3433] C903
44) [3449, 6059, 5755600] C903 ---) [14389, 5085, 417329] C3 x C903
45) [3541, 1438, 7057] C903 ---) [7057, 719, 127476] C21 x C903
46) [3821, 1201, 283225] C903 83) [11329, 2402, 309501] C903
47) [3877, 365, 32337] C903 ---) [3593, 730, 3877] C301
48) [4057, 2714, 1046277] C903 87) [12917, 1357, 198793] C903
49) [4093, 5525, 5739417] C903 ---) [7873, 4847, 5304528] C3 x C2709
50) [4177, 2915, 1747332] C903 65) [5393, 4611, 4828612] C903
51) [4229, 2641, 854573] C903 ---) [2957, 2381, 511709] C129
52) [4273, 3479, 2717136] C903 103) [18869, 6958, 1234897] C903
53) [4493, 1662, 618673] C903 ---) [5113, 831, 17972] C301
54) [4597, 4201, 411561] C903 60) [5081, 3783, 1838800] C903
55) [4621, 5621, 3600225] C903 ---) [16001, 7935, 15545044] C4515
56) [4649, 2283, 688192] C903 ---) [10753, 4566, 2459321] C301
57) [4813, 5545, 177273] C903 105) [19697, 10059, 16190932] C903
58) [4813, 5233, 2936713] C903 98) [17377, 8335, 3253588] C903
59) [4817, 5807, 4787456] C903 ---) [18701, 7817, 4051097] C3 x C903
60) [5081, 3783, 1838800] C903 54) [4597, 4201, 411561] C903
61) [5101, 3430, 3049] C903 38) [3049, 1715, 734544] C903
62) [5113, 7463, 5118228] C903 94) [15797, 6161, 9453937] C903
63) [5233, 1319, 370836] C903 ---) [10301, 2638, 256417] C3 x C903
64) [5297, 3786, 2677] C903 33) [2677, 1893, 895193] C903
65) [5393, 4611, 4828612] C903 50) [4177, 2915, 1747332] C903
66) [5657, 2098, 896749] C903 99) [18301, 1049, 50913] C903
67) [5741, 6661, 9127373] C903 ---) [10853, 6517, 10615109] C301
68) [5749, 5733, 6835625] C903 81) [10937, 7147, 3886324] C903
69) [5801, 6995, 4921796] C903 79) [10169, 4223, 2320400] C903
70) [5897, 1554, 14029] C903 90) [14029, 777, 147425] C903
71) [6977, 2819, 1217476] C903 24) [1801, 3479, 1004688] C903
72) [6997, 1341, 447821] C903 ---) [3701, 2682, 6997] C301
73) [8017, 5707, 4083856] C903 ---) [5209, 4603, 128272] C301
74) [8597, 3409, 1097801] C903 ---) [3041, 5527, 5811572] C301
75) [8737, 2246, 3001] C903 36) [3001, 1123, 314532] C903
76) [9601, 3926, 2470825] C903 26) [2017, 1963, 345636] C903
77) [9769, 1190, 197721] C903 31) [2441, 595, 39076] C903
78) [10093, 5125, 3433] C903 43) [3433, 3583, 2583808] C903
79) [10169, 4223, 2320400] C903 69) [5801, 6995, 4921796] C903
80) [10837, 3433, 971329] C903 42) [3361, 5527, 2124052] C903
81) [10937, 7147, 3886324] C903 68) [5749, 5733, 6835625] C903
82) [11057, 2555, 634112] C903 ---) [2477, 5110, 3991577] C301
83) [11329, 2402, 309501] C903 46) [3821, 1201, 283225] C903
84) [11617, 2535, 70208] C903 20) [1097, 2863, 743488] C903
85) [12197, 4133, 1340093] C903 ---) [4637, 7453, 2061293] C301
86) [12401, 2383, 523700] C903 ---) [5237, 4766, 3583889] C301
87) [12917, 1357, 198793] C903 48) [4057, 2714, 1046277] C903
88) [13049, 4643, 3663632] C903 ---) [4673, 7507, 208784] C129
89) [13537, 3319, 638784] C903 ---) [1109, 2713, 1637977] C301
90) [14029, 777, 147425] C903 70) [5897, 1554, 14029] C903
91) [14369, 6203, 8322500] C903 40) [3329, 3871, 229904] C903
92) [14549, 165, 3169] C903 39) [3169, 330, 14549] C903
93) [15493, 6313, 2120161] C903 32) [2521, 3859, 3036628] C903
94) [15797, 6161, 9453937] C903 62) [5113, 7463, 5118228] C903
95) [16649, 3850, 3106261] C903 ---) [2269, 1925, 149841] C301
96) [17257, 4003, 2759184] C903 ---) [2129, 6087, 1725700] C129
97) [17293, 5473, 221049] C903 34) [2729, 5251, 1729300] C903
98) [17377, 8335, 3253588] C903 58) [4813, 5233, 2936713] C903
99) [18301, 1049, 50913] C903 66) [5657, 2098, 896749] C903
100) [18481, 2022, 726425] C903 15) [593, 1011, 73924] C903
101) [18521, 6183, 3885316] C903 ---) [3361, 5075, 2667024] C301
102) [18701, 5673, 5572525] C903 ---) [4549, 7625, 1514781] C301
103) [18869, 6958, 1234897] C903 52) [4273, 3479, 2717136] C903
104) [19081, 7063, 3651300] C903 ---) [4057, 5503, 6182244] C129
105) [19697, 10059, 16190932] C903 57) [4813, 5545, 177273] C903
106) [28001, 1347, 278596] C903 8) [241, 2694, 700025] C903
107) [31513, 1843, 211024] C903 ---) [109, 1133, 283617] C301
108) [32353, 2314, 173941] C903 ---) [181, 1157, 291177] C301
109) [35221, 1949, 236425] C903 ---) [193, 1943, 140884] C129
110) [38593, 810, 9653] C903 ---) [197, 405, 38593] C301
111) [41213, 1901, 645869] C903 ---) [269, 3289, 41213] C129
112) [48049, 2631, 1718528] C903 7) [137, 1831, 768784] C903
113) [48953, 1111, 2624] C903 ---) [41, 907, 195812] C301
114) [51437, 697, 108593] C903 ---) [113, 1394, 51437] C301
115) [83177, 1322, 104213] C903 ---) [197, 661, 83177] C301
116) [89753, 1583, 424528] C903 ---) [157, 3166, 807777] C301
117) [111637, 413, 14733] C903 23) [1637, 826, 111637] C903
118) [112237, 697, 93393] C903 ---) [1153, 1394, 112237] C301
119) [113329, 703, 95220] C903 ---) [5, 729, 113329] C43
120) [121997, 633, 69673] C903 ---) [193, 1266, 121997] C301
121) [141833, 379, 452] C903 6) [113, 758, 141833] C903
122) [204137, 499, 11216] C903 16) [701, 998, 204137] C903
123) [252233, 1635, 605248] C903 ---) [193, 3270, 252233] C129
124) [261977, 2234, 199781] C903 ---) [29, 1117, 261977] C301
125) [262877, 513, 73] C903 ---) [73, 1026, 262877] C301
126) [268517, 717, 61393] C903 ---) [73, 1434, 268517] C301
127) [538561, 1567, 479232] C903 ---) [13, 2261, 538561] C129
128) [587413, 773, 2529] C903 11) [281, 1546, 587413] C903
129) [631133, 3178, 389] C903 12) [389, 1589, 631133] C903
130) [807337, 1747, 561168] C903 ---) [433, 3494, 807337] C301
131) [1060177, 1127, 52488] C903 ---) [8, 2254, 1060177] C301
132) [1123961, 1131, 38800] C903 ---) [97, 2262, 1123961] C301
133) [1398497, 1295, 69632] C903 3) [17, 2590, 1398497] C903
134) [1454977, 1207, 468] C903 ---) [13, 2414, 1454977] C129
135) [1725833, 1321, 4802] C903 ---) [8, 2642, 1725833] C129
136) [1753561, 1331, 4500] C903 ---) [5, 2662, 1753561] C301
137) [2438081, 1567, 4352] C903 4) [17, 3134, 2438081] C903
138) [2717993, 2739, 1196032] C903 ---) [73, 5478, 2717993] C301
139) [2918249, 2323, 619520] C903 ---) [5, 3449, 2918249] C301
140) [3029017, 1915, 159552] C903 10) [277, 3830, 3029017] C903
141) [4537433, 2139, 9472] C903 5) [37, 4278, 4537433] C903
142) [5239529, 2323, 39200] C903 ---) [8, 4646, 5239529] C301
143) [6855089, 2887, 369920] C903 ---) [5, 5774, 6855089] C301
144) [6960169, 3763, 1800000] C903 ---) [5, 5289, 6960169] C301
145) [8877889, 3167, 288000] C903 ---) [5, 6334, 8877889] C301