Genus 2 Curves Database Igusa CM Invariants Database Quartic CM Fields Database

A quartic CM field field K is represented by invariants [D,A,B], where K = Q[x]/(x4+Ax2+B), and D is the discriminant of the totally real quadratic subfield (hence A2-4B = m2D for some m).

Class number: [Non-normal] [Cyclic]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]
[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]
[73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96]
[97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144]
[145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168]
[169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192]
[193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216]
[217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240]
[241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264]
[265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288]
[289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312]
[313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336]
[337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360]
[361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384]
[385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408]
[409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432]
[433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456]
[457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480]
[481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504]
[505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528]
[529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552]
[553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [570] [571] [572] [573] [574] [575] [576]

Class group C931 non-normal (D4) quartic CM field invariants: 83 fields

K Quartic invariants Cl(OK) Igusa invariants Kr Reflex invariants Cl(OKr) Igusa invariants
1) [53, 3918, 3824113] C931 81) [3824113, 1959, 3392] C931
2) [53, 3374, 2791697] C931 80) [2791697, 1687, 13568] C931
3) [53, 5734, 8216297] C931 83) [8216297, 2867, 848] C931
4) [61, 2350, 1240081] C931 78) [1240081, 1175, 35136] C931
5) [73, 2030, 862033] C931 ---) [862033, 1015, 42048] C4655
6) [137, 742, 135449] C931 75) [135449, 371, 548] C931
7) [149, 4934, 5847689] C931 82) [5847689, 2467, 59600] C931
8) [173, 3166, 1797281] C931 79) [1797281, 1583, 177152] C931
9) [421, 2670, 1351121] C931 ---) [1351121, 1335, 107776] C2793
10) [653, 1414, 458057] C931 77) [458057, 707, 10448] C931
11) [709, 834, 171053] C931 76) [171053, 417, 709] C931
12) [877, 3121, 17929] C931 ---) [17929, 3391, 898048] C2793
13) [881, 1010, 251501] C931 ---) [251501, 505, 881] C4655
14) [977, 3387, 71524] C931 70) [17881, 2947, 879300] C931
15) [1033, 1187, 339588] C931 50) [9433, 2374, 50617] C931
16) [1069, 3254, 2630025] C931 57) [11689, 1627, 4276] C931
17) [2069, 985, 14449] C931 63) [14449, 1970, 912429] C931
18) [2069, 3750, 1893529] C931 66) [15649, 1875, 405524] C931
19) [2473, 1271, 388404] C931 53) [10789, 2542, 61825] C931
20) [2897, 523, 50276] C931 58) [12569, 1046, 72425] C931
21) [2969, 3571, 52004] C931 60) [13001, 5507, 7422500] C931
22) [3061, 2801, 1317825] C931 46) [5857, 3451, 12244] C931
23) [3301, 4658, 3826557] C931 49) [8677, 2329, 399421] C931
24) [3361, 5015, 2051856] C931 62) [14249, 6995, 658756] C931
25) [3449, 4166, 1634873] C931 43) [5657, 2083, 676004] C931
26) [3541, 2893, 1539081] C931 74) [19001, 5786, 2213125] C931
27) [3697, 3251, 2486052] C931 ---) [7673, 5331, 2499172] C2793
28) [3697, 3002, 1528389] C931 73) [18869, 1501, 181153] C931
29) [3833, 2806, 1907081] C931 67) [15761, 1403, 15332] C931
30) [3881, 3075, 220624] C931 61) [13789, 6150, 8573129] C931
31) [4021, 950, 161289] C931 71) [17921, 475, 16084] C931
32) [4049, 7155, 9031924] C931 ---) [18661, 5413, 4409361] C2793
33) [4201, 1938, 518861] C931 52) [10589, 969, 105025] C931
34) [4261, 4825, 5350381] C931 64) [14821, 7897, 12889525] C931
35) [4289, 4342, 4095625] C931 48) [6553, 2171, 154404] C931
36) [4657, 6698, 10303029] C931 51) [9461, 3349, 228193] C931
37) [4909, 2753, 1245537] C931 ---) [15377, 5506, 2596861] C12103
38) [5309, 5366, 318025] C931 59) [12721, 2683, 1720116] C931
39) [5441, 999, 182848] C931 ---) [2857, 1998, 266609] C2793
40) [5581, 4801, 5024313] C931 56) [11393, 6751, 89296] C931
41) [5641, 8218, 434725] C931 69) [17389, 4109, 4112289] C931
42) [5653, 2041, 11161] C931 54) [11161, 4082, 4121037] C931
43) [5657, 2083, 676004] C931 25) [3449, 4166, 1634873] C931
44) [5701, 3481, 2514825] C931 55) [11177, 6962, 2058061] C931
45) [5717, 1609, 16921] C931 68) [16921, 3218, 2521197] C931
46) [5857, 3451, 12244] C931 22) [3061, 2801, 1317825] C931
47) [5881, 7991, 1554100] C931 65) [15541, 8321, 7204225] C931
48) [6553, 2171, 154404] C931 35) [4289, 4342, 4095625] C931
49) [8677, 2329, 399421] C931 23) [3301, 4658, 3826557] C931
50) [9433, 2374, 50617] C931 15) [1033, 1187, 339588] C931
51) [9461, 3349, 228193] C931 36) [4657, 6698, 10303029] C931
52) [10589, 969, 105025] C931 33) [4201, 1938, 518861] C931
53) [10789, 2542, 61825] C931 19) [2473, 1271, 388404] C931
54) [11161, 4082, 4121037] C931 42) [5653, 2041, 11161] C931
55) [11177, 6962, 2058061] C931 44) [5701, 3481, 2514825] C931
56) [11393, 6751, 89296] C931 40) [5581, 4801, 5024313] C931
57) [11689, 1627, 4276] C931 16) [1069, 3254, 2630025] C931
58) [12569, 1046, 72425] C931 20) [2897, 523, 50276] C931
59) [12721, 2683, 1720116] C931 38) [5309, 5366, 318025] C931
60) [13001, 5507, 7422500] C931 21) [2969, 3571, 52004] C931
61) [13789, 6150, 8573129] C931 30) [3881, 3075, 220624] C931
62) [14249, 6995, 658756] C931 24) [3361, 5015, 2051856] C931
63) [14449, 1970, 912429] C931 17) [2069, 985, 14449] C931
64) [14821, 7897, 12889525] C931 34) [4261, 4825, 5350381] C931
65) [15541, 8321, 7204225] C931 47) [5881, 7991, 1554100] C931
66) [15649, 1875, 405524] C931 18) [2069, 3750, 1893529] C931
67) [15761, 1403, 15332] C931 29) [3833, 2806, 1907081] C931
68) [16921, 3218, 2521197] C931 45) [5717, 1609, 16921] C931
69) [17389, 4109, 4112289] C931 41) [5641, 8218, 434725] C931
70) [17881, 2947, 879300] C931 14) [977, 3387, 71524] C931
71) [17921, 475, 16084] C931 31) [4021, 950, 161289] C931
72) [18229, 173, 2925] C931 ---) [13, 346, 18229] C49
73) [18869, 1501, 181153] C931 28) [3697, 3002, 1528389] C931
74) [19001, 5786, 2213125] C931 26) [3541, 2893, 1539081] C931
75) [135449, 371, 548] C931 6) [137, 742, 135449] C931
76) [171053, 417, 709] C931 11) [709, 834, 171053] C931
77) [458057, 707, 10448] C931 10) [653, 1414, 458057] C931
78) [1240081, 1175, 35136] C931 4) [61, 2350, 1240081] C931
79) [1797281, 1583, 177152] C931 8) [173, 3166, 1797281] C931
80) [2791697, 1687, 13568] C931 2) [53, 3374, 2791697] C931
81) [3824113, 1959, 3392] C931 1) [53, 3918, 3824113] C931
82) [5847689, 2467, 59600] C931 7) [149, 4934, 5847689] C931
83) [8216297, 2867, 848] C931 3) [53, 5734, 8216297] C931